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Aerodynamics of a Rectangular Plate with 
Vortex Separation in Supersonic Flow’ 

H. K. CHENG? 

Bell Aircraft Corporation 

ABSTRACT 

A solution is obtained for the supersonic flow field in the tip 

region of a rectangular flat plate, in which the phenomenon of 

vortex separation from the side-edge is approximated by intro- 

ducing into the analytic flow field a ray of singularity possessing 

the vortex behavior. The strength and the location of the vor- 

tex singularity, and thus the solution, are determined by imposing 

additional conditions to the problem, namely, (1) that the flow 

velocity around the edge be bounded, and (2) that the vortex 

system be dynamically free. 

The mathematical model employed in describing the vortex 

separation phenomenon is essentially the same as that used in 

the treatment of the leading-edge separation from slender delta 

wings in references 6-9. The solution exhibits certain general 

characteristics of side-edge separation which have been observed 

at low speed for low-aspect-ratio airfoils. 

INTRODUCTION 

ee DEVELOPMENTS IN airplanes and missiles 

for high-speed flight have resulted in a trend 

toward using thin airfoils of short span. Consequently, 

it becomes necessary to obtain reasonable predictions 

for the aerodynamic load in the tip region and at mod- 

erate angle of attack. In this paper, a theoretical 

investigation of the supersonic flow field in the tip re- 

gion of a rectangular plate based on a simplified model 

is made. The salient feature of this investigation is 

the introduction of the effect of vortex separation from 

the side-edge into the supersonic flow field considered 

an effect which has long been recognized as being im- 

portant in determining the aerodynamic characteristics 

of narrow rectangular airfoils at low speed.'~* 

Received June 11, 1954. 

* The author wishes to express his appreciation of the helpful 

discussion and criticism afforded him by Prof. N. Rott and Dr 

M. C. Adams (now with Douglas Aircraft Company, Inc.) of 

Cornell University, A. H. Flax of Cornell Aeronautical Labora- 

tory, Inc., and Dr. J. Isenberg of Bell Aircraft Corporation 

t Aerodynamics Section, Engineering Division. 

Validity of the assumption of a nonseparated con- 

tinuous flow over an airfoil surface depends on the 

very existence of a “‘boundary layer.’ When this 

model leads to prediction of an infinite adverse pres- 

sure gradient along the boundary or an infinite flow 

velocity around a corner, the assumption of a smooth 

and thin boundary layer gives way to the phenomenon 

of “‘separation”’ which is well known in hydrodynamics 

(or low-speed aerodynamics). One of the most familiar 

examples is the shedding of vortices and the realization 

of the Kutta condition at the sharp trailing-edge of 

an airfoil.'* Another typical example is the local lead- 

ing-edge separation described by Betz, in that the real 

flow around a sharp leading-edge occurs with a small 

“vortex region’? where flow separation takes place 

locally, rendering the velocity there finite.® ** The 

influence of the vortex region resulting from the local 

separation should receive due attention in the treat- 

ment of slender airfoils, for its effect would be not as 

locally restricted as in the other cases. Theoretical 

investigations based on a simplified model have been 

made along this line in references 6 and 7. Adams in 

reference 6 shows that the nonlinear lift of a slender 

delta wing due to the leading-edge separation is of the 

order of a’ where a is the angle of attack. A certain 

ambiguity remains in Adams’ results but this can be 

removed by modifying the equilibrium condition of the 

free vortex system with its surrounding stream. This 

was pointed out later by Edwards,* and by Brown 

and Michael. However, Adams’ remark regarding the 

order of magnitude of the nonlinear lift remains valid. 

The formation of a vortex region in the neighborhood 

of a sharp side-edge of an airfoil is in essence a phenome- 

non of the same nature (and, perhaps, it is more basic 

in character in a certain sense). According to the 

ordinary linearized theory which assumes no separation 

from the side-edge, the transverse components of the 
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velocity, Og Oy and Og/0z, are infinite at the edge, 

although the ‘‘Kutta condition’? may be thought of as 

being fulfilled in a certain sense.'!° Comparison of the 

theoretical predictions which are based on the ‘‘non- 

separated”’ flow model with the experimental results of 

Winter, for a series of narrow rectangular airfoils at 

low speed,‘ showed appreciable discrepancies. The 

data were for a combination of low aspect ratio and 

(sufficiently) high angle of attack. A nonlinear theory. 

accounting for the separation effect from the side- 

edges has been given in a paper by Bollay;'! and, re- 

cently, another approach to the problem parallel to the 

following investigation is presented in reference 14. 

Here, a simplified mathematical model is adopted to 

describe the vortex separation from the side-edge in a 

supersonic flow, which is similar to the one employed 

in references 6-9, in that the rolled up vortex sheet, 

or better the free vortex system arising from the sepa- 

ration, is idealized as a ray of concentrated vorticity in 

the cross-flow field near the edge, which increases in 

strength downstream from the apex. This representa- 

tion in the analysis may be interpreted as an idealization 

of the external flow field of the free vortex system 

(which occupies a region of nonvanishing dimension 

in reality) by the ‘“‘mean”’ in a certain sense suggested 

by the classical theory of vortex motion.'* '* 

The present investigation was initiated from the study 

of yaw effects on the characteristics of thin airfoils 

with side-edges. The problem finds its analog in the 

problems of diffraction of a plane wave around sharp 

corners. !® 17 

(1) Baste ASSUMPTIONS AND MODEL 

The steady motion of a slightly disturbed flow of a 

nonviscous fluid is governed by a perturbation velocity 

potential ¢ which satisfies the linear Prandtl-Glauert 

differential equation 

O"¢ O"¢ 0" 
) - — a = © (Rok) 
Ox.” Oy" O°2 

(Wo? - 1 

where x, y, and z are rectangular Cartesian coordinates, 

as in Fig. 1, the x-axis and the y-axis being, respec- 

tively, aligned with the side-edge and the leading-edge 

of the plate, and where J/, denotes the stream Mach 
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Number. The boundary condition at upstream infinity 
is 

Oy O¢ O¢g 
= = = () 9 

Ov oy Oz 

and the boundary condition on the top and the bottom 

surfaces of the plate which lies in the plane z = 0) is 

O¢g 

Oz 
= —al’ (1.3 

where a is the angle of attack of the plate, and L’_ the 

free stream velocity. While Eq. (1.1) neglects terms 

of the square of the perturbation velocity, the boundary 

conditions as stated from above are almost exact. We 

shall assume a priori that the contribution of the side- 

edge separation to the velocity potential belongs to an 

order lower (that is, larger in magnitude) than the 

square of the perturbation velocity, and the differentia! 

system, Eqs. (1.1)—(1.3), shall therefore suffice for the 

present purpose (refer to the coordinate system in 

Fig. 1). 

The pressure is required to be continuous everywhere 

in the field except across the lifting surface—the wing, 

which may be expressed, for a plane wing, as 

_ OY 
p—p pl ad 4 

where p is the stream density; whereas, it is known 

that when the problem involves a slender-body approxi- 

mation, or one with a thin wing-slender body combina- 

tion, a more appropriate formula for the local pressure 

may be used in place of Eq. (1.4), namely’ 

O¢g Og 
p—p. = —eU (oe + a oe) ~ 

p | (O¢\* O¢\* . 
io 

2 (5%) r (** 

In order to give a detailed pressure distribution over the 

plate in the present problem, especially in the vicinity 

of the side-edge, Eq. (1.5) might be more accurate than 

Eq. (1.4); however, in determining the resultant force 

(or the lift) and its center of pressure, Eq. (1.4) will be 

sufficient, as will be shown later. 

Since the phenomenon of vortex separation from the 

side-edge arises from the local breakdown of the con- 

tinuous flow around the edge, the role of the fluid vis- 

cosity does not enter into the solution in its first ap- 

proximation. It is thus likely that the assumption 

of a conical irrotational field may still provide fruitful 

deductions for the present problem. Consequently, 

the vortex sheet or the vortex spiral may be visualized 

as a conical surface. Observation of real flow past a 

corner suggests that the free vortices may be regarded 

as being confined to a narrow (conical) region.’ ~ 

Therefore, in order to simplify the analysis further, 

a crucial step is taken, which is mathematically the 

same as that employed in references 6-9, in that the 

total free vorticity in the narrow conical region clos¢ 

to the side-edge is replaced by a single concentrated 

O1 
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“vortex” which gathers strength downstream in the 

conical field. The location of this ‘‘vortex’’ must then 

coincide with one of the conical rays through the apex, 

which is to be determined, along with the unknown 

“circulation’’ or the unknown strength of the vortex, 

by two additional conditions: (1) that the flow velocity 

in the vicinity of the edge be bounded, which would 

otherwise tend to become infinite, (2) that the location 

of the axis of the concentrated vortex be compatible with 

its surrounding stream in such a way that the free vor- 

tex system becomes dynamically free. 

If a small perturbation is maintained, the motion of 

the free vortices in the neighborhood of the side-edge, 

when viewed from downstream, will be seen as essen- 

tially the same as that which takes place in the neigh- 

borhood of a slender airfoil. Therefore, the second 

condition mentioned above reduces virtually to Eq. 
(2) of reference 14b; this point will be brought up again 

in Section (4). 

We shall formulate in the next section the corre- 

sponding mathematical problem and obtain the solu- 

tion thereof by the well-known method of conical field 

developed by Busemann and _ others.’ 

(2) FORMULATION OF THE PROBLEM 

Assumption of conical symmetry in the velocity field 

reduces the Prandtl-Glauert differential equation, which 

is satisfied also by the Cartesian velocity components 

0y/O0x, Og/ Oy, and O¢g Oz, to 

| i ee | x -(9- — ) zo- — ) — p Op? P\=p dp AYE 

(~ O¢ ) 
. = 0 (2.1) 

Ox Oy O82 

where 

6 = arc tan (3 /y) 

andB = VM,? — 1. 

Further transformation, due to Chaplygin, namely 

p 
5 = (2.3) 

l+ V1 — 9? 

leads to 

[+ ‘e, 3 =) (22 o¢ of) 0 (94 = (2.4) 
Os* Ss Os s? 00°] \Ox’ Ov’ Oz 

which is the Laplace equation in cylindrical coordinates. 

If one introduces the complex variable 

one sees that, within the unit circle in the e-plane, the 

components Og/Ox, Og Ov, and Og/Os may be repre- 

sented by the real parts of three analytic functions, say 

U,V, and W, respectively. 
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(¢) 
Fic. 2. Transformation of coordinates. 

These functions are compatible with one another 

through relations provided by conditions of irrotation- 

ality and continuity. The usual conical wing problem 

may then be solved in a relatively assessable domain 

through the conformal transformation 

in that one encounters essentially a potential problem 

in the half-plane.*" ** The above transformation maps 

the Mach cone onto the left- and the right-hand 

branches of the real axis as shown in Fig. 2, and the 

interior of the upper and the lower halves of the Mach 

Cone from the apex into the upper and the lower halves 

of the entire 7-plane, respectively.| Through the 

transformations, Eqs. (2.2), (2.3), and (2.5), it is seen 

that on the portion of the real axis between r = —1 

and 7 = | the following relation holds 

rT = B(y/x) (2.6) 

and that the infinity of the 7-plane corresponds to the 

locations of the top and the bottom positions of the 

Mach Cone from the apex, the points C and D in Fig. 2. 

In the 7-plane, the compatibility relation reads*" ** 

(2.7) 

it is clear that if either one of the derivatives, say 

IV’’(r), is determined, the solution system can be ob- 

tained by the integration of Eq. (2.7)... A relation which 

provides much simplicity to the analysis is that in the 

vicinity of the x-axis, i.e., 7 = O (which is the side- 

edge of the plate in the present problem), 

to Ke T= | + Or)” & 
y + 12 3° 

Y 

t One may also solve the boundary value problem directly in 

the e-plane 
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It then follows from the last two relations, Eqs. (2.7) 

and (2.8), that there exists a flow region, downstream 

of the apex of the conical field, in which the motion 

reduces substantially to one that occurs in the slender- 

body theory.® That is, 

yg eg 

: — a= Otr)* (2.9) 
Oy" Oz" 

The boundary condition of the problem in the r-plane 

is described as follows. Between the origin and the 

point on the plate, the boundary condition is clearly 

given by Eq. (1.3): 

R.P.W(r) = —aU, 

where R.P. stands for the real part of the function in 

volved. For 7 > 1 0n the real axis, the boundary values 

take on the Ackeret results, namely, 

R.P.U(r) = +(a/B)U 

R.P.V(r) 0 . (2.10) 

R.P.W(r) = —aU, 

II 

where the positive and the negative signs in the first 

equation designate, respectively, boundary values on 

the top and the bottom surfaces of the plate. On the 

other branch of the transformed Mach Cone, that is, 

7< i, 

R.P.U(r) = R.P.V(r) = R.P.W(r) = 0 (2.11) 

In order to render the solution determined and ac- 

ceptable to the physical problem, we specify the solu- 

tion’s behavior near each of the points 7 = —1, 0, 1, «, 

and at infinity, where « denotes the location of the axis 

of the concentrated vortex in the 7-plane. Near that 

axis which is 7 = ¢ the vortex behavior requires 

. , I 
V'(r), Wr) ~ - (2.12) 

Le =. @)° 

As |r| approaches infinity, 

yr ‘ai I ‘ 
U'(r), W'(7) ~ (2.13) 

i 

which, in view of the transformation Eq. (2.5), accounts 

for the logarithmic singularities at the top and the 

bottom positions of the Mach Cone from the apex. The 

latter logarithmic singularities result from the jumps 

occurring in the boundary values prescribed on the 

Mach Cone.** 74 Also with reference to the boundary 

condition on the Mach Cone, the analytic functions 

are required to behave as”! 

> / 

W'(r)~ Vr+latr= —-—1 

~ regular at r = | 
aoa saa (2.14) 

U'(r), V(r) ~ regular at 7 = —1 

wits = Dar <1 

For the singular behavior of the solution at the side- 

edge, r = O, the requirement of attaining a finite ve- 

locity leads to 

APRIL, 1955 

V(r), W'(r) ~ (A/V 7) 2.15 

It will be convenient to regard the solution system 

desired (U, V, W) as the sum of a system (U’*, )’* 

W*) and a system that assumes continuous flow around 

the edge (Uy, Vo, Wo) which is readily known 
as)% 21, 23—27 

, Qa ‘ T ‘ 
Ver) = U. — are sin (1 — 27) 

wr z 

: 2. 1 —T 
Vil(r) = 2 l 7 

Tv Vr 
(2.16 

; 2a. [VW1l+r 
Wo(7) = 1 [ | 7 — 

T Vr 

log (Vr + V1+ | —alU 

The star-system (U*, |’*, I’*) shall then comply with 

the following conditions: On the real axis, 

R.P.U* = R.P.V* = 0, except {7} < 1 
: (2.17 R.P.W* = 0, except —1 <7 <0 - 

and as 7 approaches ¢, —1, 1, 0 and infinity, respec- 

tively, 

dw* B | | 
A -. W - + 1, regular, —,. and — 

dr ir — €)° T T 

(2.18 

It is noted in the above equation that the constant B 

must be real and positive, so that the phenomenon of 

the vortex separation may be assured, the singularity 

of the type r~‘* at the edge + = 0 is required in order 

to cancel the infinity of the same type in WW’, and the 

behavior 7~? at infinity is necessary to provide no fur- 

ther jump in the boundary values on the Mach Cone. 

(3) SOLUTION IN TERMS OF THE VORTEX STRENGTH 

AND THE LOCATION OF THE VORTEX 

The analytic function fulfilling conditions of Eq. 

(2.17) as well as (2.18) for dW*/dr is 

dw* B | l l | 
= a ee 4 oF 

dr 2 L(7r — e)* (7 — @)? 

B |* F(e) ra) xo | 
+ (3.1) 

Ozt7r —é 2F(r) 

where the function F(r) is 7'°(7 + 1)~', and Ba real 

constant directly proportional to the circulation around 

the vortex core, [. (Details on the derivation of the 

above result can be found in Appendix I of reference 15. 

The derivation follows the approach of reference 29, 

in that the multivalued functions, such as 77’, (r + 

1)’, and (r — 1)”, have to be carefully defined and 

their definitions strictly followed.) The functions 

dU*/dr and dV*/dr are obtained readily through the 

relation Eq. (2.7). We shall examine presently whether 

conditions (2.17) and (2.18) can indeed be fulfilled by 

Oe rT — € 

the above function. 
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First, we shall show that the function given in Eq. 

3.1), which is supposed to be the derivative of I1*, is 

analytic everywhere in the 7-plane except at the site 

of the vortex, 7 = ¢, and at the singular points along the 

real axis where the conditions imposed by Eq. (2.18) 

are to be observed. In view of the special branches 

chosen for the functions involved in F(7), it may be seen 

that the function of Eq. (3.1) is analytic across the gap 
spanning between 7 = —1 and 7 = Oalong the real axis. 

The behavior of the function in approaching the points 

= —1, 0, and | is determined virtually by. the recipro- 

cal of the function F(7), which fulfills the requirements 

given by Eq. (2.18). As 7 approaches the site of the 

vortex, 7 = ¢, the first term on the right-hand side of 

Eq. (3.1) stands out predominantly and the third term 

gives rise to three distinct singular parts, one of which 

contributes to the other half of the vortex strength 

while the other two cancel each other, leaving 

dw* B 
~ - - 0(1) 

dr (r= ¢) 

which is the behavior desired. It appears from Eq. 

3.1) that some singularity of the pole type may exist 

at the conjugate point of the vortex site, namely 7+ = 

« However, careful inspection shows that they actu- 

ally cancel one another out leaving the function of Eq. 

3.1) finite and regular there. Furthermore, the re- 

ciprocal of (7) behaves as the reciprocal 7 for large 

value of 7; therefore the function given possesses also 

the desired property for large |7', that is 

d\v* l 

dr tT 

It can therefore be seen that the conditions imposed by 

2.18) are completely fulfilled. 

Next, we examine the fulfillment of the boundary 

condition (2.17) on both the top and the bottom of the 

(3.1) may be 

F(e) ] 

Oc 7 — e€] 

real axis. The function given by Eq. 
written as 

dly* I l O 
Bi IP. — Sg 

dr Le = 63" F(r) 

where /.P. stands for the imaginary part of the function 

involved, and the second term under the bracket sign 

results from the fact that, in view of the definitions 

adopted, 

F(r) = —Fi(7), 

where the bar sign stands for the complex conjugate of 

the function involved. 

On either the left-hand branch of the Mach Cone 

ep 1), or the right-hand branch of the Mach Cone 

together with the wing (7 > 0), the above expression of 

d11* dr on the real axis yields a purely imaginary value, 

thus the real part is zero. We conclude therefore that 

the function given by Eq. (3.1) can be taken as the 

derivative of the solution desired for W*(r). Similar 

Steps of verification may also be carried out for the 

corresponding functions dl’* dr and d1™* dr. 
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With due precaution on the multivalued functions 

(oO, 0"; 

These 

mentioned above, the ‘‘star-system”’ 

can now be obtained by direct integration. 

integrals will not be presented here; however, one may 

refer to Appendix II of reference 15 for details. The 

constants B and ¢ appearing in Eq. (3.1) remain arbi 

trary up to this stage (it is worth noticing, in view of 

the boundary condition, Eq. (2.17), that the ‘starred 

system’ (l*, |*, IV’*) obtained above in terms of the 

arbitrary constant B and e is valid not only for a rec 

tangular flat plate, but also for a class of plan forms) 

(4) DETERMINATION OF THE VORTEX STRENGTH AND 

Its LOCATION 

It is seen from Eqs. (2.16) and (3.1) that in the neigh- 

borhood of 7 = 0 

dW a 

dr T 

dly* B d Fie) d Fie 
~ - 4. rT 

dr 2ide « dé ¢@ 

in order to render the velocity finite in the vicinity of 

the side-edge, the constant B shall be taken as 

2a U 
B=-1 : (4.2 

aid F(e) d F(@) 
4. 

de € dé € 

which, according to the property of the function /(r 

mentioned in the previous section, yields a real value for 

B. For small values of «, the above equation may be 

written in its first order as 

Sant ve (4.3 
T w= 2 

where yu € The use of Eq. (4.3) in place of Eq. 

(4.2) implies an error of the order of ae 

A condition in addition to Eq. (4.2) or (4.5) is now 

necessary in order to determine both B and ¢. Since 

the exact boundary condition requires continuity of the 

pressure across the free vortex sheet, the equivalent 

condition in the simplified model shall then be the van 

ishing of the total force on the vortex system, which is 

in reality the fulfillment of the exact boundary condi 

tion by the mean value. This force-free condition is of 

particular importance in the present analysis. As a 

result of the vortex type singularity incorporated in the 

simplified sclution in the present analysis, which is given 

by Eq. (3.1), a pressure jump will occur somewhere in 

the field, which can be observed quite easily from the 

“compatibility relation’’ Eq. (2.7) and the local pres 

sure formula Eq. (1.5). This pressure jump may be 

interpreted as the force acting on the 

lines’ of the simplified model,® the mathematical de 

tail about which will be given briefly in Section (5). 

In order to render the vortex system dynamically free, 

this force shall be balanced by the one acting on the 

vortex core at 7 = ¢, which is essentially a ‘*Joukowsk1 

Both forces (per unit depth of x) mentioned 

‘vortex feed- 

Force.”’ 



above belong to the same order as I’-e, which will be 

seen later as a*; cancellation of these two forces in their 

first order results in 

d = 
l (fo) = pl Vin (4.4) 

dx 

where IT is the circulation around the vortex center, 

¢o the relative position of the vortex center to the edge 

in a complex plane normal to the edge, and IJ’,,’ the 

conjugate of the complex-vortex-velocity (at the vor- 

tex center) in the same plane. Therefore, the left- 

hand member is seen to arise from the pressure jump 

across the diaphragm or the ‘‘feedlines,’’ and the right- 

hand member is simply the ‘‘Joukowski-force.”’ Since 

in the present case, (> = xe/B8 and [ = 27xB/B, and 

the plane normal to the edge coincides with the y, z- 

plane, application of Eq. (4.4) vields the additional 

equation 

U _ : ; B 
2  ~~e2 —7thm| W(r) + al, + | (4.5) 

€ fe) —e dei 

where the limit on the right-hand side is the complex- 

velocity “at” the vortex center, that is, the complex- 

velocity prescribed by the surrounding fluid in the cross- 

flow plane. 

An alternative way of obtaining the above relation 

can in fact be made, based essentially on the Kelvin 

(or Helmholtz) Vortex Conservation Theorem. From 

Kelvin's theorem, one may deduce that each vortex fila- 

ment set free from the side-edge must move in a way 

prescribed by the motion of the surrounding fluid in order 

to remain force-free. However, this state of affairs, 

as pointed out already in reference 8, can be true only 

when applied to each individual vortex filament or 

bundle of filaments whose total circulation remains 

unchanged, whereas, the total strength or the circula- 

tion of the vortex system in the conical field keeps 

changing linearly downstream. Nevertheless, applica- 

tion of the above rule deduced from the Kelvin theorem 

is still possible, for one can determine from the knowl- 

edge of strength and the vortex-center of the vortex 

system, B and e, the instantaneous rate of motion of the 

free vortices (in the cross-flow plane) and equate this 

instantaneous velocity to the one prescribed by the 

surrounding stream. With the above understanding, 

one then arrives at Eq. (4.4) which can be identified as 

Eq. (2) of reference 14b, and thus Eq. (4.5), the details 

can be found in references S and 14. The left-hand 

member of Eq. (4.5) is therefore seen to be the ‘‘instan- 

taneous complex-velocity”’ of the free vortex system, 

which differs from the rate of motion of the vortex- 

center in the cross-flow plane by a factor of two. Sub- 

stituting the integral of the function given by Eq. (3.1) 

for W(r), and neglecting terms of the square of «, one 

arrives through Eq. (4.5) at an algebraic equation for 

e (refer to Appendix III of reference 15 for detail) 
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: me 

2—~2 2 — 4B _— + 
o T MU | 4yu- 2 ube 2a Mm 

where » = e ‘and Bis given by Eq. (4.3). 

The last equation yields, 

1 Ba\- 
¢e= =7 |= 17 

2 T 

Here the positive and negative signs correspond, respec- 

tively, to the positive and the negative angles of attack. 

The above result signifies the fact that the vortex- 

center locates directly above the side-edge (at approxi- 

mately the ‘12 o'clock position’’) and on the suction 

side which seemingly agrees well with some of the ob- 

servations recorded in reference 16.+ The equation of 

the ‘‘vortex core’ in space, as deduced directly from the 

last equation, is 

l Da 
cece a 7-0: 18 

P 28 \ aw \ 

and the circulation round the ‘‘vortex core,” according 

to Eq. (4.3), is 

£ _ # fBa 
f= Ze B = 4l ( ) "a (4.9 

oO re T 

which is a positive real constant, giving a clockwise 

circulatory motion as anticipated. The above results 

which characterize the side-edge separation are con- 

sistent with those obtained in the corresponding prob- 

lems of slender airfoils.''~ The error introduced by 

using Eqs. (4.3) and (4.6), instead of their more “exact 

forms, Eqs. (4.2) and (4.5), is of the order of a ‘in , and 

of the order of a? in B. 

From the above results, it can be seen that the non- 

linear effect on the velocity field belongs to an order 

varying from a‘ (at points away from the vortex free 

region) to a ’ (at points within the immediate vicinity 

of free vortex region or the side-edge) which is of lower 

order (larger in magnitude) than the square of the per- 

turbation. The use of the linearized system of differ- 

ential equation and boundary condition, Eqs. (1.1 

(1.3), is thus seen justified. 

As to the determination of the pressure difference 

across the wing, the linearized formula, Eq. (1.4), can 

also be seen to be sufficient for examination of the solu- 

tion system obtained after substitution of Eqs. (4.7 

and (4.9) shows that the nonlinear effect of the side- 

edge separation is of the order of @ * in I(r) and 

I(r), and of a’ in U(r), thus the difference between 

Eqs. (1.4) and (1.5) belongs to an order of a °. How- 

ever, somewhere at the immediate vicinity of the side- 

edge, say for r = O(e) or smaller, the order of magni- 

tude of both I(r) and II’(r) are seen to become as 

large as T'/e = O (a) It appears that Eq. (1.9 

could have been more accurate than Eq. (1.4), but it 

+ The agreement of the theoretical prediction based on ‘ 

similar model with some actual observations has been checked by 

Rott." 
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‘(r) and 
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How- 
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f magni- 

come as 

rq. (1.9 

), but it 

sed on 4a 

hecked by 

js noted that some error has already been anticipated 

at the immediate neighborhood of the side-edge be- 

cause of the adaptation of the concentrated vortex in 

place of a continuous vortex sheet. The use of Eq. 

(1.5) does not seem to warrant the effort. In fact, it 

can be shown that the contribution of the higher order 

term contained in the pressure formula of Eq. (1.5) to 

the integrated aerodynamic forces can be at most of the 

order of a * log q@ for the present case (which can be 

ignored in comparison with a’). 

(5) THE NONLINEAR EFFECT ON THE LOAD 

DISTRIBUTION OVER THE TIP REGION 

As pointed out in the last section it may be 

sufficient to use the linearized formula Eq. (1.4) for 

load prediction, in which the streamwise perturbation 

velocity Og Ox can be obtained from Eq. (3.1) by di- 

rect integration of Eq. (2.7). 

In view of the behavior of the solution at 7 = e it is 

clear from Eq. (2.7) that a singularity of the logarith- 

mic type shall exist in the function U(r) at the point 

7 =. This logarithmic singularity causes the func- 

tion U(r) to become multivalued in its real part, but 

in order to render the analytic flow field unique, a 

special cut-line in the 7-plane for the singularity is 

necessary. Consequently, a jump in the pressure 

will be found across the cut-line, whose magnitude is 

proportional to the strength of the ‘‘vortex’’ [note that 

those higher order terms in Eq. (1.5) do not contribute 

to the jump]. Although the shape of the cut-line can 

be arbitrarily chosen, it does, however, connect the 

point 7 = e and infinity. It then passes through the 

side-edge + = O and the wings proper, such as the 

dotted curve in Fig. 2c. For, the assumption of vortex 

separation at the side-edge implies continuity in fluid 

pressure and velocity a/ong the wing surfaces up to the 

side-edge 7 = 0. 

Since vortex filaments do not terminate themselves 

within an irrotational field, this cut-line may be thought 

of, after reference 6, as being composed of the ‘‘vortex 

feedlines’’ joining the bound-vortices on the wing and 

the concentrated vortex. 

The loading on the wing may be written in the form 

of load coefficient 

_p — p* i (O¢* /Ox) — (Og On ) 

; wry, > U 

Upon substituting R.P.} U(r + to) — U(r — to); for 

the difference in O¢g/Ox across the wing, and retaining 

terms of orders e? and lower, the wing load in the tip 

region can be expressed as 

AC, it 2 ‘ 
= 1 — are sin (1 — 2r) | + 

1(a/B 9 [ > 

ONS ual R(e, 7) 
€ — arg. 

T | - T—€ 

; € 
r 41 = a) TS. 

R(e, r) 

€ € 
(1 — 2r)/.P. — IP. (52) 

R(e, 7) T—€ 

where 

R(e, r) =e t+ (1 — 2e)r — Qe*(1—6€) 'r 1l-—-sr 

In evaluation of the argument of the complex function 

R(e, r)/(r — €) for points on the wing, it should be 

noted that the branch for the argument is to be chosen 

such that arg. (—1) = —7; this is evident from the 

fact that the pressure difference at the side edge of the 

wing, 7 = 0, must be equal to that across the cut-line, 

which is determined entirely by the potential jump 

around the vortex center and given by 2v/2 « 

The terms under the first bracket sign in the above 

equation are obviously the linearized results which are 

wellknown. The nonlinear part of the load coefficient is 

accordingly of the order of a’ at the edge + = 0, which 

is given by the pressure jump across the ‘‘feedlines.’ 

However, it drops off rapidly away from the side-edge, 

providing an increase in lift of the order of a‘ over 

most of the tip region. The expression given in Eq. 

(5.2), which is the ratio of the pressure difference across 

the plate to the pressure difference across a flat plate 

of infinite span, depends only on two variables, namely, 

By/x and Ba. The distributions are presented in Fig. 

3 for two particular values of the ‘reduced angle of 

attack,’’ Ba = 4° and 10° which correspond, respec 

tively, to «| = 0.0397 and 0.0730 and are presumably 

small enough to render the present first order (in « 

theory consistent. 

The increasing trend in the lift distribution toward 

the side-edge is of some interest, the same behavior has 

also been noted in the solution of the narrow rectangular 

ACp 

4p, 
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wing problem.'* Except in the very close neighborhood 

of the edge, this rising trend toward the edge in the wing 

loading seems to agree with the actual measurements. ! 

The general increase in lift over most parts of the tip 

region could have been anticipated from the consider- 

ation of the spatial distribution of the vortex filaments, 

as illustrated by Fig. 4, in that the occurrence of vortex 

separation from the side-edge causes a portion of the 

bound vortex filaments to leave the lifting surface at 

the side-edge, instead of bending backward into the 

free-stream direction before being set free at the trailing 

edge. Since deficiency in lift of a lifting surface could 

be thought of as having resulted from the backward 

bending of the bound vortex filaments into the free- 

stream direction, one naturally expects that this drop 

in the tip loading in the event of the side-edge separation 

will be considerably reduced. 

(6) THe TotraL FORCE ON THE Trp REGION 

The nonlinear effect on the total force and its mo- 

ments may be sufficiently determined by integrating 

directly over the tip region (0 < 7 < 1) the corre- 

sponding part of the function provided by Eq. (5.2) 

A simple way in handling this integration by the use 

of Cauchy’s integral theorem can be effected and the 

detail is given in reference 15. The resultant force 

on the free vortex system vanishes, since the contribu- 

tion of the pressure difference across the cut-line is 

canceled by the ‘‘Joukowski Force” on the core, which is 

of the order of a’. 

The nonlinear part of the lift coefficient is then found 
to be 

Cc,” = €|-@ (6.1) 

which is based on the wing area intercepted by the 

Mach Cone from the tip apex, hence the lift coefficient 

of the tip region is given by the sum 

Fic. 4. Sketch of free vortex filaments as interpreted according 
to Fig. 3. 
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It is noted that the above lift formula is possibly correct 
up to an order higher (smaller in magnitude) than a’, 

provided the error introduced by replacing the free vor- 

tex sheet with a concentrated vortex does not invalidate 

the solution system and its result to the same order or 

lower. 

The result presented in Fig. 5 shows that at the re- 

duced angle of attack Ba = 1° the nonlinear effect may 

be as high as 10 per cent of the value predicted by the 

linearized theory; and at Ba = 4° it becomes 24 per 

cent. This suggests an explanation of the apparent 

discrepancy between theory and experiment in_ the 

value of the lift curve slope at a = O for low aspect ratio 

(This point has also been discussed in refer- 

For, according to the present 

airfoils. 

ence 4, pp. 373-374.*) 

result, Eq. (6.2), or Fig. 5, the rate of change of the lift 

curve slope with respect to the angle of attack is infi- 

nitely large at a = 0 for an idealized sharp edge. The 

same figure, Fig. 5, provides also the value of Cp* Cp 

as a function of Ga. 

It is worthy of notice that the lift coefficient given 

in Eq. (6.2) based on the area intercepted by the tip 

Mach Cone may also be taken as the lift coefficient for 

a complete rectangular plate of aspect ratio .R = 

1/8, as shown in the upper left-hand corner of Fig. 5. 

By obtaining the moment of force about the side-edge 

in a similar manner, the c.p. of the nonlinear lift can be 

determined, which is found located at the intersection 

of the two-third chord line x = 2C 3 and the ray 

Biy/x) = (1/4) (6.3 

to the first approximation. Whereas, the c.p. of the 

linear part of the lift is known acting at the intersection 

of the two-third chord line and the ray @(y x) = 9 

Eq. (6.3) signifies the fact that the nonlinear lift cor- 

responding to Eq. (6.1) is not simply a result of local 

concentration of lift near the side-edge but, rather, a 

Se] 

Se] 
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contribution of the difference over a con- 

siderably extended area. 

pressure 

At higher Mach Number, in view of Eq. (6.2), the 

nonlinear term may become important in determining 

the tip effect. 

It is believed that the present analysis provides rea- 

sonable information on the flow field within the Mach 

Cone from the apex (except in the smmediate vicinity 
of the tip, 7 = O). In the neighborhood of the tip 

Mach Cone, 7 = 1, the solution is, however, subject to 

an error of the order of a® as a consequence of the 

differential shifts of the true 

which is a shock wave in reality) on the top and the 
A detailed investigation on the 

“characteristic cone” 

bottom of the wing. 

lift distribution in the neighborhood of the tip Mach 

Cone seems lacking in literature,** but its effect on the 

total lift is believed to remain at an order higher 

smaller in magnitude) than a’, provided the thickness 

and the boundary-layer effects remain sufficiently small, 

or at least innocuous. 

(7) CONCLUDING REMARKS 

The the solution obtained 

above can be given in terms of the strength or the cir- 

results characterizing 

culation of the free vortex system, the equation of the 

vortex core in space, and the nonlinear lift as well as its 

center of given respec- 

tively in Eqs. (4.8), (4.7), (6.1), and (6.3). The load 

distribution over the tip region, as illustrated in Fig. 

pressure. The foregoing are 

5, may also be taken as one of the salient features char- 

acterizing the phenomenon. 

As remarked at the end of Section (3), solutions of the 

same type can also be obtained without difficulty for a 

class of plan forms such as that illustrated in Fig. 6, for 

which the variation in configuration only leads to a 

different determination of the free vortex strength and 

its location, i.e., B and «. 

Comparison of the features mentioned with the solu- 

tions in the other cases has been made in a previous 

note,'* however an additional remark concerning the 

equilibrium condition of the free vortex system will be 

given here. Close examinations of all these solutions 

reveal that there exists a moment of couple left unbal- 

anced in the vortex system, although the resultant 

force has been made vanished to the appropriate order. 

This error shall certainly remain harmless; in fact, if 
this moment of the couple, together with other ‘‘mo- 

ments of the higher order,’ could be made identically 

zero, the simplified model itself would become the 

model. But the this 
unbalanced couple can serve, perhaps, as a reference 

exact order of magnitude of 

measuring the error introduced by the simplification, 

that is, the error caused by the replacement of the free 

vortex sheet with the concentrated vortex. This order 

of magnitude is found to be a’ in the case of side-edge 

Separation, and of a’* in the case of the leading-edge 

Separation. It is hoped that the question of this type 

of error can be satisfactorily settled in the future, when 
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Plan form for which Eq. (3.1) is valid Fic. 6 

some of the ‘‘exact solutions’ to the continuous-vortex- 

sheet models become available.” 
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The Difference Property of the Kernel of the 
Unsteady Lifting Surface Theory 

H. G. KUESSNER* 

Max Planck-Institut fuer Stroemungsforschung, Goellingen, Germany 

SUMMAR\ 

rhe kernel of the integral representation of the general solution 

of the linearized lifting surface theory has the difference prop 

This leads to two corresponding forms of solution which erty 

From the difference give the unsteady 

property a condition of compatibility is obtained for the char 

acteristic function G of the kernel of the harmonic three-dimen 

reverse-flow theorem 

sional subsonic case. By this the pressure is obtained in clos« 

nalogy to the two-dimensional incompressible case 

|) DIFFERENCE PROPERTY OF THE KERNEL 

I ORDER TO represent the solutions of the unsteady 

lifting surface theory in the simplest possible man- 

ner, the integral representation is used with a Green 

function as kernel of the integral. The velocity po- 

tential of disturbance is expressed by 

y,; 3) = dx' dy’ | dw(s’, x’, y 
J « Js’ 0 

Als, 2,92; 0,2.7,@ €) 

where v, y, g are Cartesian coordinates in a system mov- 

ing with the lifting surface and s is the straight flight 

path of the zero point of the coordinate system, starting 

from rest s = 0. The lifting surface (a) is assumed in 

the plane z = O. The given downwash of the lifting 

surface 

ws, x, ¥, 0) = dhs, x; ¥, 9) (2) 

is contained in a Stieltjes integral with the parameter s. 

The velocity potential must satisfy the wave equation 

7 v(s) fo ah 
vy? — is % v2) = © 

& “a ae 
(33) 

Do = 

The pressure of disturbance is given by Euler's equa- 
tion 

P\S, X, V, 3) = — pov(s) GS, x, ¥, 2) (4) 

Os Ox . 

Where p, is the density and ¢, the velocity of sound of 
the undisturbed fluid, v(s) is the variable velocity of 
flight of the lifting surface. 

Because Dé = 0, we have according to Eq. (1) also 
DK = 0. 

place 

If o(s) = constant or cq = ©, we may re- 

Received June 16, 1954 

* Professor Dr. Ingr. 

without changing the differential operator D of Eq. (3). 

Therefore we have also D'K = 0. By this the com- 

position of the kernel A is simplified because it has the 

difference property 

RS, % He. 293 
Ki(s — rae ok SS aa SS oe if \J 

This difference-kernel property of the linearized lifting 

surface theory is well known. It enables one to under- 

stand thoroughly the lifting surface theory, as will be 

shown in the following. 

(2) REVERSE-FLOW THEOREM 

and (5) we obtain the corresponding 

| | dx dy X 

| dw (—s, —x, —y, 0) K(s — s'’,x — x’, y — y’, 2) 
e 0 

From Eqs. (1) 

formula 

H—s', —x’, —y’, 3) = 

(6) 

The lifting surface may attain a final rest point after a 

flight path s. Then we can add to Eq. (6) an integral 

with the limits —s) to 0, without changing ¢. Because 

o(z) = —(—2), we can write Eq. (6) also 

bf wan 
dw(s, v, 0) A(s — ‘. x=— x’. y — y’,2) (7) 

0 

o(s', x, 9, 3) = 
e 

wo! 

where the bar denotes reverse flow. If we multiply 

Eq. (6) by 

I dx’ dy’ | dw(s’, 

we obtain the general re- 

, x’, v’, 0) 

and apply Eqs. (1) and (5), 

verse-flow theorem for v(s) = constant or G = « 

| } dx dy dw(s, x, v, 0) d(s, x y¥, 3) = 
e e « o 

| dx dy | dw(s, x, vy, O)d(s, x, y, 2) (8) 
« e ed § 0 
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If we apply first the operator (4) to Eq. (6) and then 

repeat the same procedure, we obtain the corresponding 

theorem for the pressure 

f fax dy dw(s, x, y, 0) p(s, x, y, 2 
we d/ 5s 0 

a 

ff dx dy / dw(s, x, vy, 0) p(s, x, y, 2) (9) 
e e e 0 

a) 

For harmonic oscillations the functions of s and of x, y, 2 

are separated. Therefore we may drop s in Eqs. (8) 

and (9) and obtain the reverse-flow theorem, stated by 

Flax! for harmonic oscillations: 

if dx dy w(x, y, 0) p(x, y, 2) = 
ve 

{f dx dy w(x, vy, 0) p(x, y, 3) (10) 

(da) 

Eqs. (6) to (10) are useful, if the kernel A is not known 

explicitly or known only in a complicated form. They 

hold for every Mach Number. 

(3) SINGULARITY OF KERNEL 

The difference property of the kernel A is evident in 

the supersonic case. But in the subsonic case the ker- 

nel is composed of a regular part and of a singular part 

which do not have this property singly. Only their 

sum has it, as will be proved in the following. 

We assume a harmonic downwash 

w(s, x, y, 0) = w(x, vy, 0) exp (zks) (11) 

By a general nonorthogonal Lorentz transformation 

of the coordinates we transform the wave Eq. (3) at 

rest (compare references 2 and 3). With the corre- 

sponding reduced coordinates x, y, g and reduced quan- 

APRIL, 1935 

(V2 + x*)o*(x, y, 2) = O 12 

—[w + (0/0x) |o*(x, v, 2) = p*¥(x, y, 2 (13 

where 

tk! kip 
o = s kK = = 3 l4 

| — 6 1 —8B ( 

The reduced velocity potential is expressed by 

@*(x, ¥, 3) = | dx’ dy’ w*(x’, vy’, 0) X 

i 

K(x — x',y — y’,2 15 

In the author's published lecture* and paper?® a char- 

acteristic function for the subsonic case has been intro- 

duced : 

: conte —~ ult) eh ae 
G(u, v, W;v', WwW) = 2D, ; In(v, W) OSa(v', Ww 16) 

1 R,, (Q) 

being a regular solution of the wave Eq. (12). uw, 2, » 

are orthogonal single-valued coordinates depending on 

x, Vv, 3 u = constant is a convex surface; u = 0 de- 

notes the lifting surface. w = 0 denotes the plane of 

symmetry normal to the lifting surface. R,, is a wave 

function vanishing at infinity. .S, is a surface har- 

monies for “7 = constant. 

The kernel A must have singular points on the bound- 

ary of the lifting surface 

“= ©: y= @- and , =F (17 

v = (0 may be the leading edge and v = 7 the trailing 

edge of the lifting surface. Therefore, according to 

the former stated conditions, we assume the general 

kernel* 

* This is a modification of the author’s Eqs. (44) and (53) of 

reference 3. Both assumptions are admissible as it is easy to 

see, but the present one is more convenient for surface harmonics 

tities p*, p* we have Si(v, w 

tiw/2 ’ , , ’ , , 
: 76, t, wou, @), Gila, v0: vw) 

K = & [ rhae@g<0Cal.. 2 jb aE IS Rie sD 
Picea G,'(u, v, w; 0, 0), G..(a, 0, 0; 0, 0) 

are G(u, v, w; v’, w’), G.(a, r, 0; v’, w’) 
Ao [ F(a, w)da\,/? ’ . (1S oP Lon «Gok @ oO, C..ta, «0; 2, © 

V(u, 0, 0) 
(19 F(u, w) = exp wx(u, 0, 0) 

U(u, 0, 0) 

U and J are the usual auxiliary functions of orthogonal 

coordinates. The constants A; and A, have to satisfy 

the condition that on the lifting surface the given down- 

wash is reproduced : 

, , ° 3) a , , | dx’ dy’ im — K@ — x’, y — y', 3) = 1 
z=0 Oz 

(a) 

for x, vy inside (a) (20) 

But we need a second condition in order to determine 

A, and A». If we assume A; = As, we obtain a solution 

giving only the Kelvin momentum and no steady lit 

This was a paradox of hydrodynamics during the 19th 

century. If we assume A, = OQ, we obtain the Kutta 

condition, giving smooth flow on the trailing edge 

v = mand the usual lifting forces. It is of course pos- 
sible to compose solutions with A; > A» > 0, giving forces 

Ne 
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between the Kelvin and the Kutta case, and this gen- 

eral case seems to be more realistic. An 

condition for A, A; may be obtained by the boundary- 

layer theory or by measurements of the aerodynamic 

derivatives. 

We introduce the differential operators 

additional 
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According to the difference property Eq. (5) of the ker- 

nel A we have 

(21) D,K = D,K = 0 

Eqs. (18) and (21) are compatible only by the condi- 

D, = 0/O0x + 0/Ox’; D, = 0/oy + 0/Ov’ tion 

G .(O, 2, 0; v’, w’), G."(u, v, w,; O, O) CD,G = GD,G = 

C, and C, are constants. 

first determinant of Eq. (18) 

, 
G (0, 7, 0; 2’, w’), G 

G (0, 0, 0; v’, w’), 

G..,.(0, 2, 0; 0, O), Gy 

G..(0, 0, 0: 0, 0), G 

A similar equation holds for the second determinant 

of Eq. (18). Therefore D,A = 0. 

that the kernel A given by Eq. (1S) has the required 

By this it is proved 

difference property if and only if Eq. (22) is valid. 

Therefore, every characteristic function G suitable for 

our basic assumption Eq. (18) must satisfy the condi- 

tion of compatibility Eq. (22). This the author has 

proved for the two-dimensional case for which the 

characteristic function is known explicitly: 

Nen'(k, t) 
G(u, 2,0’) = do ; 

1 Ne,’ (x, 0) 
s€,(k, Vv) S@,(x, v’) (24) 

Ne, and se, are Mathieu functions. 

The condition of compatibility was first given by the 

author in a special integral form in a lecture’ and in 

private communications since January, 1953. He has 

discovered it by comparison of solutions of the two- 

dimensional case obtained in two different ways, after 

Re- 

cently Timman‘ has given another special integral form 

the introduction of the characteristic function G. 

G (0, 0, 0: v’, w’), G 

If we apply the operator D, to Eq. (1S) and replace it by Eq. 

(u, v, W; mw, O) ’ 

(22), we obtain for the 

G.(0, 2, 0; v’, w’), G..'(a, 0, 0: 0, 0) 

G (0, 0, 0; v’, w’), G..'(a, 0, 0; x, 0) _ (93 

G.,(0, m, 0; 0, 0), G..’(a, 0, 0: 0, 0) <i 

G..(0, 0, 0; 0, 0), G.,’(a, 0, 0; m, 0) 

of this condition. But the connection with the differ- 

ence-kernel property is not remarked until now. 

(4) INTEGRAL REPRESENTATION OF PRESSURE 

Furthermore, Eq. (22) is useful for the integral repre- 

sentation of the pressure of the three-dimensional sub- 

sonic case. According to Eqs. (13) and (15) we have 

the reduced pressure 

p*(x, y, 2) = i dx’ dy’ w*(x', y’, 0) X 

Ki(x — x’, y — y’, 2) (25) 

K, = —[w + (0/d0x) JA = —[w — (0/0x’)|K (26) 

Because 

G(u, v, w; v’, w’) = O (27) 

we obtain from Eqs. (18), (26), and (27) by integration 

by part and applying Kutta’s condition A, = 0: 

$/2 v=o OW 

2 —3n/2 

—ao +37/2 

ix/2 

: ae . — 
{ F(u, w) du lim D,G(u, v, 0; v’, w’) 

(28) 

F(u, w) du G,,’(u, 0, 0; 0, 0) 

If we normalize the characteristic function G such that C; = 1, we finally obtain from Eqs. (22) and (28) the kernel 

of the reduced pressure: 
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K, = —A, }[w — (0/dx’)] Gu, v, w; v’, w’) + G,'(u, v, w; 0, 0) [(G.(0, 2, 0; 27’, w’) T(x, w) — G.(0, 0, 0; 0’, w’)]! 

29 

| F(u, w)G.,'(u, O, 0; wr, O) du 

T(x, w) = - 3 ix/2 30 

| F(u, w)G,,’(u, 0, 0; 0, O) du 
. fin/2 

By specialization we obtain from Eqs. (25), (29), and (30) the reduced pressure of the two-dimensional subsonic 

case 

* 2 , * , : , , j 0 ’ , i p*(4,0) = — w*(O0, v’) sin v’ dv == las ot) 
7 J0 | sin v Ov 

G.'(u, v; 0) E (0, w; 2") T(x, w) — G.(O, 0; “|| , 

| 

| exp(—w cosh uw) G,.."(u, O, mw) du 
on . + sx/2 9 
T(x, w) = - ix/? (52 

exp(—w cosh u)G,..’(u, 0, O) du 
* tx/2 

This result the author has already proved in his former Aeronautical Sciences, Vol. 20, No. 2, pp. 120-126, February, 
, cS, Sener ene *. a . sit r 1953 papers in several ways. Itis the simplest possible repre 

sentation of the solution because it transforms term by 2 Kuessner, H. G., A Review of the Two-Dimensional Problem of 

term into the known solution for incompressible fluid. Unsteady Lifting Surface Theory During the Last Thirty Years, 

This would not be if the integration path in Eqs. (1S), The Institute for Fluid Dynamics and Applied Mathematics, 

(28), (30), and (32) had to remain on the real half-axis. University of Maryland, Lecture Series No. 23, April, 195 

In this case the integral representation of the solutions ! Rcomses, 31. G...A Generel Methel for Selving Profle: of th 

and also their computation would be complicated con- Unsteady Lifting Surface Theory in the Subsonic Range, Journal! 

siderably. of the Aeronautical Sciences, Vol. 21, No. 1, pp. 17-27, January, 

1954. 
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The Generalized Shock-Expansion Method 
and Its Application to Bodies Traveling at 

High Supersonic Air Speeds 

A. J. EGGERS, JR.,* RAYMOND C. SAVIN,* ann CLARENCE A. SYVERTSON* 

Ames Aeronautical Laboratory, NACA 

SUMMARY 

It is demonstrated that the shock-expansion method can be 

generalized to treat a large class of hypersonic flows, only one of 

which is flow about airfoils. This generalized method predicts 

the whole flow field, including shock-wave curvatures and rc 

sulting vorticity, providing that (1) disturbances originating on 

the surface of an object are largely absorbed in shock waves with 

which they interact and (2) disturbances associated with the 

divergence of stream lines in tangent planes to the surface are of 

secondary importance compared to those associated with the 

curvature of stream lines in planes normal to the surface. It is 

shown that these conditions may be met in three-dimensional as 

well as two-dimensional hypersonic flows. When they are met, 

surface streamlines may be taken as geodesics, which, in turn, 

mav be related to the geometry of the surface. 

The validity of the generalized shock-expansion method for 

three-dimensional hypersonic flows is checked by comparing pre- 

dictions of theory with experiment for the surface pressures and 

bow shock waves of bodies of revolution. The bodies treated 

are two ogives having fineness ratios of 3 and 5. Tests were con 

ducted at Mach Numbers from 2.7 to 6.3 and angles of attack up 

to 15 degrees in the 10- by 14-in. supersonic wind tunnel of the 

Ames Aeronautical Laboratory. At the lower angles of attack, 

theory and experiment approach agreement when the ratio of 

Mach Number to fineness ratio—that is, the hypersonic similar- 

itv parameter——exceeds 1. At the larger angles of attack, theory 

tends to break down, as would be expected, on the leeward sides 

of the bodies. 

As a final point, it is inquired if the two-dimensionality of 

inviscid hypersonic flows has any counterpart in hypersonic 

boundary-layer flows. The question is answered in the affirma- 

tive, and results of experiment are employed to provide a partial 

check of this conclusion. 

INTRODUCTION 

T= SHOCK-EXPANSION METHOD has been widely and, 

for the most part, successfully used in calculating 

flow about airfoils traveling at moderate supersonic 

speeds. This method is, of course, a synthesis of two 

basic mathematical tools for treating supersonic flows 

namely, the oblique shock equations of Rankine and 

Hugoniot and the corner expansion equations of Prandtl 

and Meyer. As was early observed by Epstein,' the 

method has the inherent advantage (over potential 

flow theories) of accounting for changes in entropy 

through strong shock waves. In this respect, then, 

the shock-expansion method is especially well suited 

for treating hypersonic flows about airfoils, inasmuch 

Presented at the Aerodynamics Session, National Summer 

Meeting, IAS, Los Angeles, June 21-24, 1954 

* Aeronautical Research Scientist. 

as these flows are usually characterized by strong shock 

waves. 

The leading-edge shock wave interacts strongly, 

however, with Mach waves originating at the surface 

of an airfoil in hypersonic flight. This phenomenon 

can appreciably alter the shape of the shock wave and 

the flow downstream thereof, especially in the case of 

curved airfoils. Evidently, then, shock-wave - Mach- 

wave interaction must be investigated to determine the 

extent of applicability of the shock-expansion method 

to two-dimensional hypersonic flows. 

The interaction phenomenon has, in fact, been studied 

by numerous investigators including Lighthill,? Pai,® 

and the present authors.‘t Unfortunately these stud- 

ies yield widely different answers for hypersonic flow, 

with the result that the applicability of the shock- 

expansion method remains in doubt. It is therefore 

undertaken as the first objective of this paper to resolve 

these differences, and it is demonstrated, as originally 

proposed by the authors,’ that the major effects of the 

interaction phenomenon can be accounted for with the 

shock-expansion method when it is properly general- 

ized. 

Studies of more complex two- and three-dimensional 

flows have led to the discovery™ * that flow about air- 

foils is only one of a large class of hypersonic flows 

that can be treated by the generalized shock-expansion 

method. It is undertaken, therefore, as the second ob- 

jective of this paper to describe how this method can 

be employed to predict a complete three-dimensional 

flow field, including shock-wave curvatures and result- 

ing vorticity. The validity of the method for three- 

dimensional hypersonic flows is checked by comparing 

the predictions of theory with experimental results for 

the surface pressures and bow shock waves of lifting 

and nonlifting bodies of revolution at Mach Numbers 

from 2.7 to 6.3. 

As a final point, we inquire if the two-dimensional 

character of inviscid hypersonic flows has any counter- 

part in hypersonic boundary-layer flows. It is con- 

cluded that such a counterpart does exist, and recourse 

7 Crocco® and Munk and Prim treated the subject in connec- 

tion with their investigations of flow at the nose of an airfoil. 

Boa-Teh Chu’ considered the general problem; however, through 

a misinterpretation of his results, he arrived at erroneous con- 

clusions regarding the strength of reflected disturbances 
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Fic. 1. Shock-wave - Mach-wave interaction. 

is made to the experimental pressure-distribution data 

to obtain a partial check on this observation. 

SHOCK-WAVE - MACH-WAVE INTERACTION AND THE 

GENERALIZED SHOCK-EXPANSION METHOD 

The interaction problem may, for our purposes, be 

reduced to the determination of how large a fraction of 

a disturbance incident on a shock wave is reflected from 

To aid in our discussion of this problem, 

The sketch in the upper 

the wave. 

attention is called to Fig. 1. 

part of this figure shows an element of a curved oblique 

shock wave. The disturbances incident on this wave 

are propagated along the upward sloping Mach lines, 

while those reflected from the wave are propagated 

along the downward sloping Mach lines. We see that 

a measure of the strength of the disturbances incident 

on the wave is given by the change in pressure along the 

line AB, while a measure of the strength of the disturb- 

ances reflected from the wave is given by the change in 

pressure along the line BC. The ratio of the change 

along BC to that along AB is, then, a measure of the 

degree to which disturbances are reflected from the 

oblique shock wave. This ratio can be calculated by 

considering an infinitesimal element of the shock wave 

and by employing the compatibility relations for fluid 

properties along characteristic or Mach lines in com- 

bination with the oblique shock equations. It was 

precisely this method that was used by the present 

authors* in studying shock-wave - Mach-wave inter- 

AERONAUT CAL SCIENCES AVRIL, 1035 

action, and the results obtained at a free-stream Mach 

Number, fo, of infinity are shown in the lower part 

of Fig. 1. It is seen that the ratio is small compared 

to 1, except at extremely large deflection angles (close 

to those for shock detachment). The methods oj 

Lighthill and Pai are not intrinsically different from 

that employed by the present authors, and yet we ob- 

serve that Lighthill’s equations give negative values 

of this ratio which are in the neighborhood of — |, while 

according to Pai, correspondingly large positive values 

are obtained. Lighthill’s values are found to be in- 

ordinately large (negatively) as a result of an algebraic 

error made in his analysis. When this error is cor- 

rected, his results agree with those of the present au- 

thors.* The large positive values due to Pai result 

from partially neglecting entropy gradients in the flow 

When Pai’s 

analysis is corrected, results are obtained which also 

downstream of the curved shock wave. 

agree with those of the present authors. It is con- 

cluded, therefore, that disturbances are, in general, 

only weakly reflected from shock waves in the flow. 

The fact that the shock-expansion method ignores 

these reflected disturbances should not, then, appre- 

ciably affect its applicability to the calculation of flow 

at the surface of an airfoil in hypersonic flight. 

Now it is natural to inquire if, in the case of two- 

dimensional flow, the shock-expansion method can be 

generalized to give, in addition to surface conditions, 

fluid properties throughout the whole flow field. Our 

studies of shock-wave - Mach-wave interaction strongly 

suggest that such a generalization can be achieved in- 

asmuch as it was found that disturbances are almost 

entirely absorbed in shock waves with which they inter- 

act. Thus, let us assume that they are, in fact, entirely 

absorbed, and let us see what this means in terms of the 

construction of the flow field. For this purpose, at- 

tention is called to Fig. 2 where flow about an airfoil 

is shown schematically. Mach Number and pressure at 

the surface are calculated employing the oblique shock 

equations and the isentropic expansion equations in the 

usual fashion. Several points on the surface of the 

* Professor Lighthill has concurred in this matter in a privat 

communication to the senior author. 

SHOCK WAVE 

A STREAMLINES 

\\ AIRFOIL f 

Fic. 2. Calculation of flow about an airfoil 
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THE GENERALIZED 

airfoil are chosen to start the construction of the flow. 

For purposes of simplicity we assume that the initial 

element of the oblique shock wave emanating from the 

leading edge is straight. The intersection of this ele- 

ment with the Mach line emanating from point B on 

the surface is then calculated by simple trigonometry. 

At the point of intersection it is assumed that the 

Mach wave is entirely absorbed in the shock wave. 

This is tantamount to requiring that flow conditions 

downstream of the shock wave (beyond point E) con- 

form in terms of pressure* to those along the Mach 

line BE. The inclination of the shock wave at point E 

is thus fixed. Let us proceed to construct the Mach 

line emanating from the airfoil surface at point C. 

The intersection of this line with the stream line passing 

through point E is determined  trigonometrically. 

Now, as this Mach line propagates beyond point F, it 

enters a flow field of slightly different Mach Number, 

and its inclination must be changed accordingly. With 

the new slope of this Mach line, we calculate its inter- 
section at point H with the segment of shock wave 

extending beyond point E. At the intersection of these 

waves the attitude of the shock wave is again changed 

to satisfy the requirement that flow downstream of the 

wave (beyond point H) must have the same pressure 

as exists on the Mach line at point H. We proceed 

then to construct the whole flow field about the airfoil 

in this manner, and it is observed that the calculation is 

greatly simplified by comparison to the method of char- 

acteristics which requires that corrections be con- 

tinuously made for disturbances propagated along the 

family of Mach lines proceeding from the shock toward 

the surface. T 

In order to check some of these observations, shock- 

wave shapes and surface pressures were calculated with 

the generalized shock-expansion method and with the 

method of characteristics for a 10 per cent thick bi- 

convex airfoil at zero incidence and a free-stream Mach 

Number of infinity. The calculations were made for 

an ideal diatomic gas, and the results are presented in 

The shock waves are shown in the upper part 

y are in rather close 

Fig, 33. 

of the figure, and it is seen that they 

agreement. Due to the interaction phenomenon, both 

waves curve well away from the straight shock wave, 

having the correct slope at the leading edge. Shown 

on the lower part of Fig. 3 are the pressure distributions 

given by the two methods, and it is seen that they differ 

only slightly. As a final point, it should be emphasized 

that these results at a Mach Number of infinity repre- 

sent a severe test of the generalized shock-expansion 

method. Comparable studies of flow about curved 

lo the accuracy of this analysis they also then conform in 

terms of flow inclination 

+ It has been our experience, for example, that the time re 

quired to construct a two-dimensional flow field by the general- 

20 per cent of ized shock-expansion method is, at most, about 

that required for the characteristics method. Surface pressures 

can, of course, be obtained in a matter of minutes with the shock- 

expansion method 
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a q 

airfoils at Mach Numbers from 3.5 to show even 

smaller departures of the predictions of this method from 

those of the characteristics method.‘ Evidently, then, 

the generalized method is capable of predicting the dis- 

turbed flow field about airfoils in hypersonic flight. 

We inquire next about the applicability of the method 

to three-dimensional hypersonic flows. 

GENERALIZED SHOCK-EXPANSION 

HYPERSONIC FLOwS 

APPLICATION OF THE 

METHOD TO THREE-DIMENSIONAL 

In this study the specific questions asked are when and 

how can the generalized shock-expansion method be 

employed to calculate three-dimensional hypersonic 

flows? In order to answer these questions, we use the 

fact that the disturbed flow field extends only a short 

that is to 

Thus it is 

distance away from the surface of a body 

say, shock waves lie close to the surface. 

reasonable to assume that the disturbed flow can be 

treated approximately by confining our attention to the 

immediate neighborhood of the surface. It is con- 

venient then to consider the equations defining the 

adiabatic flow of a continuous fluid with refer 

In particular, a 

which the 

steady 

ence to a local coordinate system. 

rectangular coordinate system is chosen in 

XY axis is tangent to a stream line at a point on the 

surface of a body. The Z axis is taken normal to the 

surface at the point of tangency, while the V 

tangent to the surface at the origin of coordinate system. 

X-Z and X-¥ planes would appear 

axis iS 

Stream lines in the 
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STREAM - 
LINES 

\ 
SURFACE 

\ STREAM- 
; x LINES 

TANGENT PLANE 
Fic. 4. Coordinate system, 

something like those shown in Fig. 4. If we take l’, IV’, 

and II’ as the components of velocity in the directions 

of the X, VY, and Z axes, respectively, the continuity 

equation becomes near the origin of the coordinate sys- 

tem 

[O(pl’) OX] + pl(OlV/oY) + (OW /0Z)| = 0 (1) 

where p is the local density. Similarly, the momentum 

equations may be written 

[LU (OU /OX)] + [(1/p) (OP/0X)] = 0 (2) 

[U(OV/OX)] + [(1/p) (OP/OY)] = 0 (3) 

[U(OW/0X)] + [(1/p) (OP/0Z)] = 0 (4) 

where P is the local static pressure. Now, if a strictly 

three-dimensional flow is to be calculated with the gen- 

eralized shock-expansion method, then this flow must 

be at least locally two-dimensional. Intuitively one 

guesses* that this two-dimensionality occurs in planes 

normal to the surface of a body —that is, the X-Z planes. 

In this event we deduce from the continuity equation 

that 

OW/o0Z| > |OV/OY| (5) 

* This guess can be substantiated with mathematical reason- 

ing.® 

APRIL, 1955 

Noting that the velocities |’ and IV are proportional 

to the flow inclination angles 6 and 4, respectively 

(see Fig. 4), and using the transformation? 

06 OZ = —V IA — 1(06 OX) 

where .1/ is the local Mach Number, Eq. (5) becomes 

06/0X |) > (1/V JJ? — 1/00/0V 6 

This expression determines when the generalized shock- 

expansion method can be employed to calculate three- 

dimensional hypersonic flows.{ Physically, it may be 

interpreted to mean that disturbances associated with 

the divergence of stream lines in planes tangent to a 

surface must be of secondary importance compared 

to those associated with the curvature of stream lines 

in planes normal to the surface. 

It is evident from Eq. (6) that increasing the Mach 

Number of the flow tends to make it appear locally 

more two-dimensional and, by the same token, more 

amenable to solution with the generalized shock-expan- 

sion method. Obviously, too, how high the Mach 

Number must be is determined by the shape of the 

body.** It follows, then, that the hypersonic simi- 

larity parameter relating body shape and Mach Num- 

ber is a significant index to when the method can be 

employed for a particular class of bodies. 

The remaining question to be answered is how can 

the generalized method be employed? Part of the 

answer to this question is self-evident; when Eq. (6 

is satisfied, flow in planes tangent to surface stream lines 

and normal to the surface of three-dimensional bodies 

can be constructed with the generalized shock-expansion 

method after the manner developed for airfoils (see 

The real problem, then, is to locate the sur- 

For this purpose it is observed that 

Fig. 2). 

face stream lines. 

pressure gradients transverse to planes of essentially 

two-dimensional flow must be small by comparison to 

gradients in these planes. Hence, it follows from the 

+ The complete transformation is 

06/0s = —V M? — 1(06/0X) + [11(06/0G,)] 

where C,; is a first-family Mach line (positively inclined with 

respect to a stream line). In flows of interest here, however, 

disturbances emanating from the surface are large compared to 

those reflected back to the surface (see discussion of shock-wave - 

Mach-wave interaction ) and hence 

d5/OC, | << (VW M2 — 1/M) | 05/OX 

t This observation is easily verified by combining Eqs. (1), 

(2), and (6) with the energy equation 0S/O0Y = (0 and the state 

equation p = p(P, S), where S is entropy, to obtain the differen- 

tial equation of Prandtl and Meyer for flow along a stream line 

namely, 

dP/dé = pU?/V/ M? — 1 

** There are shapes, of course, like the right circular cone, for 

which the flow does not become strictly two-dimensional, irrespec- 

tive of the magnitude of the Mach Number.® — 
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THE GENERALIZED SHOCK-EXPANSION METHOD 

momentum Egs. (3) and (4) that (replacing velocities 

with flow inclination angles) 

00/OX | < 06 OX (7) 

This equation states, in effect, that surface stream lines 

may be taken as geodesics; thus it establishes how the 

generalized method can be employed. 

Geodesics are functions of the geometry of a surface 

and are perhaps most often identified as lines of shortest 

distance between two points.'” They are also uniquely 

defined if their directions are known at a point. This 

is a useful property in many cases because stream-line 

directions can often be determined at the leading edge, 

or edges, of an object in hypersonic flow, independent 

of how complex its general shape may be. 

We are now in a position to apply the generalized 

shock-expansion method to the calculation of three- 

dimensional hypersonic flow* about particular shapes. 

Bodies of revolution are of interest, so it will be under- 

taken to apply the theory to these shapes, and further, 

the results of theory will be compared with experiment. 

COMPARISON OF THEORY AND EXPERIMENT FOR BODIES 

OF REVOLUTION 

It was suggested in the previous discussion that the 

hypersonic similarity parameter is a significant index 

to when the generalized shock-expansion method can 

be applied to three-dimensional flows. For bodies 

of revolution, this parameter, A, may be defined as the 

ratio of free-stream Mach Number, .}/), to fineness 

ratio, /d; thus A = J\/,/(//d). An analysis,* based 

primarily on Eq. (6), indicates that the generalized 

method is applicable to such bodies when A is greater 

than about 1. 

The next problem is to determine the geodesics of a 

body which may be taken as surface stream lines. We 

know that these stream lines originate at the vertex. 

The only pertinent geodesics passing through the ver- 

tex are the meridian lines; hence the meridian lines are, 

to the accuracy of this analysis, the surface stream lines. 

This result is exactly true for noninclined bodies of 

revolution but can only be considered an approximation 

for inclined bodies. The calculation of flow about a 

body proceeds then as follows: Flow at the vertex is 

assumed known either from cone theory or from ex- 

periment. Flow downstream of the vertex along the 

surface stream lines is determined with the Prandtl- 

Meyer expansion equations in the same manner as for 

airfoils. The flow field between the body and the 

shock is constructed in meridian planes by assuming 

the pressure is essentially constant along Mach lines 

emanating from the surface—the construction in each 

plane parallels that for an airfoil. 

The theory of when and how to apply the generalized 

shock-expansion method to bodies of revolution is now 

“It should be noted that the previous discussion of steady 

flows can be extended over to nonsteady flows about slender 

shapes 
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established. It remains then to determine if the 

method really works. For this purpose, experiments 

were conducted in the Ames 10- by 14-in. supersonic 

wind tunnel!'! on two ogives having fineness ratios of 3 

and 5 and base diameters of 1.5 in. These bodies were 

tested at angles of attack of 0°, 5°, 10°, and 15°. The 

test Mach Numbers and Reynolds Numbers were as 

follows: 

Reynolds Number 
Mach Number (based on body diameter 

2.73 1.06 million 
$25 1.09 million 

5.05 0.52 million 
6.30 ().22 million 

Surface pressures were measured in all cases (usually 

with McLeod gages), and bow shock waves were photo- 

graphed with the aid of a schlieren apparatus. These 

data were also obtained for two cones having the same 

vertex angles as the ogives. 

It is appropriate first to compare theoretical and ex- 

perimental pressures acting on the bodies at zero angle 

of attack. The results for the fineness ratio 4 ogive 

demonstrate the important points, as we can see from a 

study of Fig. 5. Here, predictions of both the shock- 

expansion method? and characteristics theory'’ are 

shown along with experimental data. Corresponding 

to the Mach Number range of 2.73 to 6.30, the range of 

the hypersonic similarity parameter is from 0.91 to 2.10. 

+ In this case reliable theoretical results for the conical flow at 

the vertex are available'*? and have been employed 
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4 ie We observe that, in accordance with theory, the gener. _ 

a=5° alized shock-expansion method predicts surface pressure I’ 

SIDE coeflicients close to those obtained experimentally gt sn 

" — BOTTOM values of the similarity parameter greater than |. As er 

_— would be expected, too, the agreement between thes pe 

F EXPERIMENT BOTTOM predicted coefficients and experiment tends to improve efi 

up to a Mach Number of 5. At the highest Mach on THEORY 

Number of 6.30, we observe, however, that both the 

PRESSURE COEFFICIENT 

IF 

generalized method and characteristics theory giv, 

0 me pressure coefficients that, although in agreement, are on 

appreciably lower than experiment. There is no par- os 

ia ticular reason, on the basis of past experience or other- cas 

= ! wise, to doubt the accuracy of the characteristics “a 
9 20 40 60 80 100 O 20 40 60 80 100 . : : . flo’ 

PERCENT NOSE LENGTH theory for this body. In this connection we note that th 

Fic. 6. Pressures acting on ogives at Wy = 5.05 and a = 5°, the theory is in good agreement with experiment at all M 
the lower Mach Numbers. It seems logical, therefore. eee 

to suspect that the departure of theory from experiment - 

at J) = 6.3 1s caused by viscous effects in the flow re 

7 ass"... TOP More specifically, it is suggested that this departure wi 

6 SIDE may be traced to a substantial increase in thickness is 

z 5 ee1ee BOTTOM of the laminar boundary layer on the ogive. The low a 

o K= 1.01 Reynolds Number of the tests and, to a somewhat lesser ; 

u a i — EXPERIMENT _— extent, the high Mach Number could produce such an nd 

3 3 ~ THEORY increase. This matter will be considered further in ; e 
Wo connection with our study of the hypersonic boundary ne 

D layer later in the paper. wi 
dP a seel 

& Attention is now turned to flow about the inclined 
0 , ‘ . - ; ‘ 

bodies. We will first concern ourselves with the sur- A 

-l face pressures on the fineness ratio 3 and 5 ogives at a sion 

0 20 40 60. 80 100 0 20.40. 60 80 100 Mach Number of 5.05. Fig. 6 shows the pressure dis- expt 

PERCENT NOSE LENGTH tributions according to the generalized shock-expansion fore 

Fic. 7. Pressures acting on ogives at M, = 5.05 and a = 15°. method and experiment for three meridian planes cor- thee 

responding to the bottom, the side, and the top of each The 

body. In the application of the generalized method, that 

THEORY the flow at the vertex was determined from the experi- bett 

mental results obtained with the cones that were tested.” Axie 

CONICAL SHOCK: — The angle of attack is 5 degrees. Values of the hyper- and 

—— sonic similarity parameter, A, for each body are also esse 

- EXPERIMENT shown. For the fineness ratio 3 ogive, A is 1.68, while Ur 

for the fineness ratio 5 ogive, A is 1.01. As would be | hich 

expected, the agreement between theory and experi- i 

ment is good for the fineness ratio 3 ogive. With the ; 

fineness ratio 5 ogive, nearly the same agreement is Z 

obtained except on the top or leeward side of the body es 

where the generalized method gives too low pressures. ia | 

The pressure distributions for these same two bodies ae 

inclined 15° are shown in Fig. 7. Here we observe that led | 

the agreement between theory and experiment is much : "ee 
CONICAL SHOCK the same as it was at 5° angle of attack. The tendency | heen 

AND THEORY of the generalized method to give too low pressures on aineer 

the top of a body has also become evident, however, ee 

in the case of the fineness ratio 3 ogive (AK = 1.68). 

* Experimental results for the conical flow at the vertex are | 

also used in all other comparisons between theory and experi Th 

ment (both for pressures and shock-wave shapes) made for the a 

K =1.0] inclined bodies. This procedure was employed, rather than 

using theory as in the noninclined case, since reliable theoretical 

results for inclined cones, such as the second-order solutions of | 

Stone-Kopal,'* are not available at the high Mach Numbers of ht 

Dtain Fic. 8. Shock waves for ogives at My = 5.05 and a = 10°, interest here. 
bottor 
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The method is, of course, strictly applicable only at 

small angles of attack; hence the appearance of this 

error is not surprising. Nevertheless, it may be ex- 

pected too that at 15° angle of attack viscous cross-flow 

effects’? are influencing surface pressures, especially 

on the extreme leeward side of the body. 

Surface pressures provide, of course, only a partial 

check of the generalized shock-expansion method—a 

check, so to speak, only at the inner boundary of the 

disturbed flow field. It is of interest, then, to check 

the method at the outer boundary of the disturbed 

flow—that is, at the bow shock wave. For this purpose, 

the bow waves for the fineness ratio 3 and 5 ogives at a 

Mach Number of 5.05 and 10° angle of attack were cal 

culated in the plane of symmetry with the generalized 

method, and they are compared in Fig. 8 with those 

obtained experimentally. The conical shock waves 

created by the cones having the same vertex angles as 

the ogives are also shown for contrast. We observe in 

the case of the fineness ratio 3 ogive that theory and 

experiment are in excellent agreement. In the case of 

the fineness ratio 5 ogive, much the same observation 

can be made. This latter result would, in view of the 

marginal value of the similarity parameter (A = 1.01 

seem somewhat fortuitous. 

As an overall check on the generalized shock-expan 

sion method, it is appropriate to consider the forces 

experienced by the ogives. To this end the normal- 

force coefficients were obtained by integration of the 

theoretical and experimental pressure distributions. * 

The results are shown in Fig. 9, and we observe again 

that the agreement between theory and experiment is 

better at the higher value of the similarity parameter. 

Axial forces have also been obtained for these ogives, 

and the shock-expansion method is found to apply with 

essentially the same accuracy. 

Up to now we have considered only inviscid flow at 

high supersonic air speeds. In the treatment of bodies 

of revolution just completed, we noted, however, what 

ippeared to be an indirect effect of viscosity —namely, 
an appreciable alteration of surface pressures by 

boundary-layer growth at the highest test Mach Num 

ber. We are reminded, therefore, of the important role 

played by viscosity in hypersonic flows, and we are 

led to inquire if the two-dimensionality of inviscid 

hypersonic flows has any counterpart in the hypersonic 

boundary layer. This matter is the final topic of dis- 
CUSSIC yn. 

HYPERSONIC BOUNDARY-LAYER FLOWS 

lhe arguments presented here are concerned with 

the steady hypersonic boundary layer, and they will 

‘T e . . . . 

This integration was performed using pressure distributions 

obtained in the five equally spaced meridian planes between the 

bottom and thx top of the body 
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be, for the most part, physical.t Furthermore, they 

will appear as natural extensions of conclusions reached 

in our study of inviscid hypersonic flow. Let us recon 

sider, then, the motion of the inviscid fluid. We have 

established that this motion is, under certain well 

defined circumstances, confined locally to planes normal 

to the surface of a body and tangent to surface stream 

lines. Correspondingly, there is no sensible momen 

tum transfer across these planes. Now if viscous 

forces are set up in the flow bounding the surface, we 

recognize that they will act to resist the motion of the 

fluid—that is, the motion in the normal planes.  Evi- 

dently, then, these forces act in the same planes of 

local two-dimensional flow as the pressure forces, and 

it must follow, of course, that resultant changes in 

momentum of the fluid also occur in these planes. 

Consider now the changes in energy of the disturbed 

fluid. These changes can be brought about by viscous 

or dissipative work, pressure work, heat convection, and 

heat conduction.{ It was just found, however, that 

the forces doing work act in the normal planes; hence 

we conclude that the corresponding changes in energy 

occur in these planes. Similarly, heat is convected in 

the normal planes, since mass is convected in these 

planes. Finally, we conclude also that heat is con 

ducted locally in the normal planes inasmuch as the 

temperature gradients set up by the action of viscous 

forces are confined primarily to these planes.**  Evi- 

dently, then, changes in energy of the fluid can be 

+ Although not presented, corresponding mathematical argu 

ments have been pursued using the Navier-Stokes and energy 

equations, and the final results confirm those obtained here. It 

is indicated too that these results may apply also to nonsteady 

boundary-laver flows. 

t Radiation and absorption may, of course, also contribute to 

energy changes; however, it is bevond the scope of this paper to 

consider these phenomena. 

* One might conceive of severe temperature gradients being 

imposed at the wall boundary by, for example, extremely non 

uniform surface cooling. Such gradients, if transverse to stream 

lines, would naturallv invalidate this argument 
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treated locally as a two-dimensional phenomenon in 

planes normal to the surface of a body. 

Thus far we have been concerned mainly with forces 

and their relation to the momentum and energy of the 

fluid. The question of conserving mass remains to be 

investigated. It will be recalled that the requirement 

of conservation of mass determined when the general- 

ized shock-expansion method could be employed to 

calculate three-dimensional flows. This requirement is 

physically (and mathematically) the same, independent 

of whether or not viscous forces come into play. We 

conclude then that for the purposes of this study Eq. 

(6) can be used to determine when the three-dimensional 

boundary layer can be calculated with two-dimensional 

equations. From Eq. (6) it is indicated that the bound- 

ary layer must be largely hypersonic if this calcula- 

tion is to be permissible. It is not to be implied, how- 

ever, that the boundary layer always becomes two- 

dimensional, as on an airfoil, if the stream Mach Num- 

ber is made extremely large. For example, in the 

case of axial flow about the right circular cone, Eq. (6) 

is violated independent of Mach Number,* and we 

must use something like the Mangler transformation’® 

to obtain the boundary layer. On the other hand, if 

the body, instead of being conical, is curved in the 

stream direction, then it is indicated that the boundary- 

layer flow should approach the two-dimensional type 

with increasing Mach Number. 

To check these observations experimentally in any 

detail is beyond the scope of the present paper; how- 

ever, we can obtain a partial check with relative ease. 

This was done by using two-dimensional 

theory” to calculate the laminar boundary layer on the 

fineness ratio 3 ogive at zero incidence and a Mach 

The body ordinates were increased 

simple 

Number of 6.3.7 

by an amount equal to the displacement thickness of 

the boundary layer. The pressure distribution about 

the distorted body was then obtained with the general- 

ized shock-expansion method. This corrected pressure 

distribution and the original uncorrected distribution 

are presented in Fig. 10 along with experiment. We 

observe that while uncorrected pressures are definitely 

low, the corrected pressures are in good agreement with 

In this case, then, the relatively simple 

distributions 
experiment. 

methods of correcting airfoil pressure 

for boundary-layer growth are, as indicated by 

theory, suitable for application to the body of revolu- 

tion. 

* Recall that this violation was also encountered in the case 

of inviscid flow about the cone (see footnotet on p. 234). 

+ The theory breaks down at the vertex of the body, much as 

at the leading edge of an airfoil. It is therefore not applied in 

this region, and, consistent with a practice successfully employed 

with airfoils, viscous effects are ignored in calculating flow at the 

vertex 
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CONCLUDING REMARKS 

In conclusion, it is appropriate to digest our results 

and to indicate the overall implications of this study. 

First, it is recalled that by virtue of Mach waves being 

largely absorbed in shock waves with which they inter. 

act, the whole disturbed flow field about an airfojj 

can be easily calculated with a generalized shock- 

expansion method. Further, it was demonstrated that 

this generalized method can be applied to the calcula- 
tion of three-dimensional hypersonic flow fields, pro- 

viding that disturbances associated with the divergence 

of stream lines in planes tangent to the surface of a 

body are of secondary importance compared to those 

associated with the curvature of stream lines in planes 

normal to the surface. Bodies of revolution were cited 

as an example of shapes producing flow fields satisfying 

this requirement. A comparison of theory with ex- 

periment substantiated this contention, showing that 

the generalized method predicted the surface pressures 

and bow shock waves of ogives when the hypersonic 

similarity parameter of the flow was greater than about 

1. Finally, the concept of three- 

dimensional hypersonic flows was extended to steady 

boundary-layer flows, and a partial experimental check 

of the validity of this extension was obtained. 

In the light of these results, we conclude that the 

generalized shock-expansion method should prove use- 

ful in treating three-dimensional hypersonic flow fields 

Further- 

two-dimensional 

about practical aerodynamic configurations. 

more, it is proposed that methods of treating two- 

dimensional hypersonic boundary layers may, in like 

manner, prove useful in predicting three-dimensional 

hypersonic boundary layers. 
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The Lift and Moment on a Ring Concentric 
to a Cylindrical Body in Supersonic Flow 

F. EDWARD EHLERS* 

Boeing Airplane Company and Oregon State College 

SUMMARY 

The supersonic flow at an angle of attack about a ring con 

centric to an infinite circular cylinder has been computed using 

linearized supersonic flow theory. Asymptotic formulas for 

the lift and moment on the body and on the ring have also been 

obtained. Several graphs of pertinent data for the cylindrical 

ring of zero thickness are given for ready reference 

NOTATION 

A = aspect ratio 

( = coefficient (such as Cp = pressure coefficient ) 

H = inverse Laplace transform of 

I)( pBR)Ki(p8) + Ii pB)Ko( pBR 

I\(pBR)Ki(pB) — 11 pB)Ki(pBR 

As = Bessel functions of imaginary argument (notation 

of Watson! 

| = Bessel functions of first kind (notation of Wat 

son!) 

length of ring in units of evlinder radius 

= lift force 

8R) = lift function of Ward! for ring exterior 

Vf = Mach Number of free stream 

V(1/8R) = moment function for ring exterior 

” = moment on ring or body 

= Laplace transform variable (also pressure 

radial distance from axis in units of evlinder radius 

mean radius of ring 

R(x = radius of ring at station x 

= velocity of free stream 

V(x/8R pressure function for ring exterior 

; K, (p8R) — Ko( pBR 
HW(x/8R) = inverse Laplace transform of > 

K,(pBR 

axial coordinate 

= x/[B(R — 1 

angle of attack 

f : V?— | 

oe }(d/dd) [J (ABR) ¥1'(AB) — 
J1'(4B) Vy'(XBR)] fa =p 

6 = azimuth angle ip plane x = constant 

velocity potential 

¢ = perturbation velocity potential 

¢ = perturbation velocity potential for symmetrical 

flow 

¢ = perturbation velocity potential for cross flow 
A = p , 

Ar = nthroot of J)(AB R)¥i(AB) — Ji(A8) ¥i( BR) = 0 

Mu = nth root of J; (ABR) ¥,(A8) — 

Ji'(B) ¥i'ABR) = 0 

T l/[B(R — 1 

x( 1(pBr) Ky'(pB) — T1'(pB)Ki( pBr 

v }(d/dX) [Ji ABR) Vi(AB) — Ji(AB) Vi(ABR)] fa =a 

Received Mari h 29, 1954 Revised and received October 20, 
1954 

Aerodynamicist, Boeing Airplane Company, on leave from 

the Mathematics Department, Oregon State College 

Subscripts and Superscripts 

= moment about x = 0,7 = 0 (on »n 

exterior or outer part of ring 

= ring interior 

w@ = ring surface 

D = body 

INTRODUCTION 

§ bee COMPUTATION IS MADE in order to obtain an 
estimate of the lift and moment for a ring airfoil 

around an axially symmetric body. To simplify the 

computation, the body is chosen as an infinite circular 

cylinder of radius unity ina supersonic streamat an angle 

of attack, a. Concentric to the cylinder is a ring of 

length / (see Fig. 1). The inner and outer radii of this 

ring are assumed to vary only slightly from the con 

stant value R. With small angle of attack, then, the 

assumptions of the linearized theory are satisfied, and 

the perturbation velocity potential ¢ is a solution of 

the differential equation 

gr + [C/r)¢-] — Bere + (¢o0/r?) = 0 

where 8 = V JJ? — 1 and ¢, 6, x are the usual cylin- 

drical coordinates. To simplify the solution, the com- 

plete velocity potential ¢ is assumed to have the form 

U}x + alr + (1/r)] cos @ + Q = 

Gol\X, 7) - @ Cos G o(x, 7 

The first two terms in the braces can be recognized as 

Fic. 1 Details of ring on cylinder in supersonic flow 
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the velocity potential for the flow of velocity UL’ over 

an infinite circular cylinder at a small angle of attack 

a. The potentials g) and ¢g; are the perturbation po- 

tentials induced by the concentric ring, and they vanish 

identically for x < 0—1i.e., ahead of the concentric ring. 

The method of solution is to apply the Laplace trans- 

form to the boundary conditions and the differential 

equations for gp and ¢g,. This reduces the problem 

to the solution of ordinary differential equations for the 

transforms of go and g; with linear boundary conditions. 

Occurring downstream of the ring is a vortex sheet. 

Under the assumption that this vortex sheet consists of 

a cylinder of radius R, the conditions of continuity of 

pressure and continuity of flow direction across the 

sheet leads to the result that the cross flow potential, 

¢1, be identically zero for the region downstream of the 

Mach lines emanating from the trailing edge of the ring. 

Thus the pressure distribution that affects the lift and 

moment on the body is influenced by the ring only in 

the regionx = 8(R—1)tox =/+ B(R — 1). 

GENERAL THEORY AND THE DERIVATION Oi 

I) Derivation of the Potentials o and ¢, 

Let the velocity potential for the supersonic flow be 

given by 

@= Uixt o(x, r, 0)] j 

= Uix tT a cos O[r + (] r)| + GoixX, 7) + (1.1 

a cos 0 @,(Xx, ri 

Since g(x, 7#) must satisfy the equation in the introduc- 

tion, it follows from the form of ¢ given in the second of 

Eqs. (1.1) that the potentials g) and ¢; must satisfy, 

respectively, 

Yo + (1 ’) Por 3B" 0 (tz 

Yirr + (1 rie Piss — ( ae == (Ls 

Now if we multiply the above equations by pe “* and 

integrate each derivative with respect to x from 0 to 

infinity and integrate the ¢go,, and ¢),, terms by parts 

twice, we obtain 

Dorr + (1 

Grr + (1/r)e1, — [p°B? + (1/r?)]@i = 0 

r)Gor — p*B*go = O (1.4) 

(i>) 

where ¢ = p [ e~”? o(x)dx. The fundamental solu- 
Js 

tions of these equations are the Bessel functions of 

imaginary argument—J,(p8r), Ao(per) I, (pBr), 

K,(p8r) in the notation of Watson.! 

and 

II) Boundary Conditions 

On the boundary of the cylinder the flow direction 

must be tangential to the surface—i.e., atr = | 

(0¢/Or) _ O¢ 

(Op /Ox) or 

a cos 6} [1 — (1/r?)] + Girtrar + [gor] = O 

AERONAUTICAL SCIERBRCES AFTRiL, 1955 

Hence, 

ir = gor = OV 

and in terms of the transforms 

Oy = go, = 0 )] 

atr = I. 

To develop the boundary conditions on the ring we 

assume that it is almost cylindrical so that the boundary 

conditions can be satisfied at r R, a constant, I 

the distribution of radius for the ring is R (x), then the 

condition of tangential flow direction on the surface 

of the ring is 

@ COs é[1 — (1/R?*) 4 $1, | t+ gor = R’(x 

From this we see that aty = R we must have 

gor = R'(p 2.2 

gr = —[l — (1/R?)] 2.3 

Where R’(p) denotes the Laplace transform of R’(x), 

1II) The Symmetrical Solution 

Since the flow is supersonic, the flow between the ring 

and the cylinder is independent of the solution on the 

outside of the ring and therefore may be computed 
separately. The general solution of Eq. (1.4) ts 

Go = In(pBr)f(p) + Kol psr)g(p 3.1 

where /) and Ay are the Bessel functions of imaginary 

argument in the notation of Watson! and f(p) and 

g(p) are analytic functions of p to be determined by 

the boundary conditions. Applying Eq. (2.2) and Eq. 

2.1) to Eq. (3.1) yields 

I\(p3 li 7) = Ay( pB)g(p) = 0 

I (p8Rif(p) — Ki(pBR)g(p) = R'(p)/ps 

Hence, 

Ky (pa)R'(p 
f(p) - 

PB (pBR) Kips — 1,(p3)Ky( par 

I\(pB)R'(p 

PB (pBR)Ki(p8) — 1(p8)Ai(pBR)] 

into Eq. (3.1) gives us %. Substituting f(p) and g(p 

l 
a: en 7% 

9 

l tt e”* [To(pBr) Ki(pB) + Th(p8) Kel per) | 
- : R’ (p dp 

PBT (pBR)Ky(p8) — 11(p8)Ki(paR 

271 

a 

To find the pressure on the interior of the wing we 
need O0g,/Ox atr = R. Using the Faltung integral this 

becomes 

O¢go l 
. | H'(x — t)R't) dt 

Ox B Jo 

where 
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F [Lo(p3R)Ky(pps) é 1\(p8)Ko(pBR) | dp 

ai 2ri ds, p [l(pBR)Ki(pB oe T\(p8)K,(pBR) 

The integrand is analytic except for poles on the imagi- 

ary axis. Letting p = 7X yields 

(" e*[Jo(ABR) V¥i(AB) — Ji(AB) Yo(ABR) |dd 

ir [Ji (ABR) V,(AB) - Ji(AB) Yi (ABR) | a 

The function /7 can be expressed as the sum of the 

residues of the poles at the zeros of the denominator. 

Let \, be the mth root of 

J (ABR) ¥3(AB —_ Ji(AB Vi(ABR = VU (3.3 

Then the residue is 

eT Ti (AnBR) Vi(anB) — Ji(AnB) Vo(AnBR) | 

tir, }(d/dr)[JTi(ABR) Vi(AB) — Ji(AB) Vi(ABR) J}, 

ind at A 0 

l £' }(1/pp8) [1 + O(p? log p)]\dp 2Rx 

ri p((R/2) — (1/2R)] ~ B(R?-1 

Hence 

is 2x 

' BIR — (1/R)] 
we SiN An® [Jo(AnBR) Vi(anB) — SiQn8) Yo(An BR) ] 

aD \¥ 

vhere 

y 1(d/dd) [Jv(ABR) Vi(AB) — Ji(AB) Vi(ABR)] 4 

(3.4 

Substituting for // in Eq. (3.2) vields for the pressure 

2(O¢o/Ox 2R[R (0) — Rix) ]/ [8(R? — 1)] - 

wm [o(AnBR) Vi(A,8) — Ji(n8) Vo8R) J 
xX 

= ¥, 

cos A,, (x — t)R,’(t)dt 
oO 

where X,, is the solution of Eq. (3.3) and y, is defined in 
Eq. (3.4 

Now for the A,, sufficiently large, the Bessel functions 

may be replaced by the first term of their asymptotic 

expansions namely, 

J Ag (4/2) ’* cos [z vr 2 w+) | 

V (2 (7/22) ’ sin [s — (vr/2 a/4)] 

hen the are solutions of 

S |ABR 3m/4)] sin [AB (3r/4)] — 

(32 /4)] sin [ABR — 

sin AB(R — 1) = 0 

ind, hen e 

\, = +n7/[B(R — 1)] 
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The residues then becom 

[B(R — 1)le COS 17 

tinm[(d dd) sin AB(R — 1)]y-neacr 

— | é . Tr € ) 

2inn 

where sz = x/[8(R — 1 The function recuces to a 

Fourier series —namely, 

2Rs 
Hi = + 

R+ 1] 

Si! Tis -+ ] 1 sf T\s l so Sin uT(2 in um(z 1)" 

* gph aa n 

This series may be summed to represent a simple alge- 

braic function. From Carslaw,* page 242. we have 

m (=—1)* , 
0 of zB sin né 3.9 

n 

for -x [4< mr. By the periodicity of Fourier series 

1 

6 2a 25 sin 16 5.0 
Nl 

fort < 8 < 5x. The function // finally simplifies to 

Il R-1)(R+ 1)|J¢4+ 1 B(R+ 1 + | 

for O 238(R | Then 

2 . R ; t dt 5 

( - R(O R(x) ] 
8 Jo BIR+ 1 B-(R — 1 

a) 

for the inside surface of the ring 

The exterior solution has been obtained by Ward? 

and is given here for the sake of completeness. Since 

only outgoing waves must prevail at infinity, the trans- 

form of the velocity potential, ¢o, 

Ao(per). The 

the boundary condition, Eq. (2.2), is 

will contain only 

solution of Eq. (1.4) which satisfies 

rc | — [Kol pr) | [PBA y(pBR) |} Ro’ (p 

Hence 

l °a e K (per R , p dp 

2m J a p*BAK\(pBR 

and on the outer surface of the wing 

O¢ 2 e’*Ko(pBR)Ro'(p)dp 
G —2 ; : — 9) 

On 21 Jo PBK \(psR 

2h J Ya aia i K,(pBR K.(pBR) | | = SA — BOO 
8 l2mri J. p K,(p8R 4 

{ 
; 

R p dp 

2 F ‘ ef t , - 
= Ry'(x) — HH ( ) Ry’ (t)dt 3.10 

B Jo BR f 

I(x/BR) is the inverse transform of 

Ky (pBR)]/[Ki(pBR)] and is tabulated in 

The quantity 

[A (pBR) 

reference 3. 
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(IV) The Cross-Flow Solution where /i(p) and gi(p) are analytic functions. The 
i ‘ a . Ba teed Er en lt nan Lo ‘ 9 2) vie 
rhe procedure for obtaining the potential, ¢, is simi- boundary conditions of Eqs. (2.1) and (2.3) yield 

lar to that for g. The general solution for the interior ; a 
flow which satisfied Eq. (1.5) is given by K'(pB)h(h) + Ki'(pB)gi(p) = 0 

2: = [1(pBr) fil) + KilpBr)gi(p) [,'(pBR)A(p) + Ki’ (pBR)gi(p) = — [1 — (1/R*)] pe 

Solving for f\(p) and g;(p) leads to the following result for ¢ 

l ( l ) _ e”*(1,(pBr)Ky'(pB) — T1'(pBi) Ki(pBr) |dp ‘i 

Rs Ja PB [Ih (pBR)Ky'(pB) — 11'(pB) Kyi’ (pBR) | 
fi = 

Qari 

The procedure for evaluating and simplifying ¢) is essentially the same as for g Writing p = 7A, then forr = R 

Cp = —2(0¢)/0x)a cos 6 

o 2(R? — 1) alee jl [" te’* [J (XBR) V1/(AB) — J1'(AB) Vi(ABR) Jdd | +34 

BR? ~ Qari Sia A[Ji/(ABR) V1/(AB) — Ji'(4B) Wr (ABR) |S i 

Let yu, be the mth solution of 

Jy'(ABR) V1"(XB) — Si(AB) V1'(ABR) = 0 (4.3) 

Then the residue is 

ies" [Ty (uBR) V1" (unB) — Si" (unB) ViGunBr) 1t / (+ wndn) 

when 

6, = \(d/dd) [J\(ABR) V1/(AB) — J1/(4B) ¥1(ABR) Jf n=, (4.4 

Then the resulting coefficient of pressure due to ¢, on the inside surface of the ring becomes 

2(R? — 1) sin w,¥ [Ji (unBR) V1’ (unB) — J1’(unB) ¥i(unBR) | 
Cy, = a cos 6 . > i - 

BR? n l My 0, 

For the sake of clarity, the complete coefficient of pressure for g and ¢; on the inside surface of the ring is given 

here—namely, 

2R Ry —_ R(x) Jo(X, BR) Yr (A,B) ioe F (A,,8) Vo(A,8R) | ox ? ‘ 

= | | -4> | | sin A,(x — f)Ri'(t)dt + Cp ° 
B(R? — 1) n=1 VY, 

2(R? — 1) > sin wnX [Ji (unBR) V1’ (urB) — Ji’ (unB) Vi(unBR) | 
a cos @ YD 

BR , n=1 MnO» 

where y, and 6, are defined in Eqs. (3.4) and (4.4) and A, and u, are solutions of Eqs. (3.3) and (4.5). 

If all the uw, are large, then the Bessel functions may be replaced by the first term of their asymptotic expansions. 

Consequently Eq. (4.2) becomes 

: 2(R? re |) j *ia e” r+,A(R-1 | eg FU B(R-1 j 

Cy, = a a cos 6 - : | eee dx 
BR: l2ri Jia 4 27d sin A[B(R — 1)] f 

The poles occur at 

sin AB(R — 1) = O 

or 

A\B(R — 1) = nr 

and 

Mn = +=n7/(B(R — 1)] 

Evaluating the residues and simplifying yields 

2(R? — 1) sin nr(z + 1) + sin mr(z — 1) 
Cp _ _ a cos @ ) > (—1)"| 

7BR? Ped n 

=) oo, } [2(R? = 1) ] (BR?) } (zs — l)acos@é@ 

' 
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Finally, the approximation to the complete coefficient 
of pressure on the inside surface of the ring becomes 

2(R(0O) — Ri{x)] 2a cos 6(R + 1) 

G* BR + 1) B°R? 

[x — B(R — 1)] (4.6) 

when 0< x < 28(R — 1). For R—> o, the coefficient 

if pressure becomes 

Cy = +(2a cos 6)/B 

Thus we obtain the result for the lower side of a two- 

dimensional flat plate at an angle of attack a cos 6 (see 

reference 4, page 42). 

The cross-flow potential for the exterior flow over 

an almost cylindrical tube has been found by Ward.? 

However, the theory requires some modification for 

The potential ¢,; must represent 

Hence ¢,; must have the 

our special problem. 

out-going waves for r > R. 

form 

21 = K,(pBr)h(p) 

where h(p) is an analytic function of p. The boundary 

conditions yield 

0¢,/0r = —[1 — (1/R?)] = pBKi'(pBR)A(p) 

and, after solving for h(p), we get 

= —}[1l — (1/R*)]Ki(pBr){ /[pBKi'(pBR)] (4.7) ¥1 

Then the pressure coefficient on the upper side of the 

ring 1s 

. 9 O¢) 
y= —Z acos @ = 

Ox 

2a(R? — I ‘2 PRP 
BR? 25t Sei PRK y(pBR) 

2a cos 6 (R? — 1) (4) 
= ] (4.8) 

BR? BR 

[he function J’(z) is evaluated and tabulated in refer- 

When R—> o@, ence 5 and in Table | of this report. 

vix/(BR)| — 1 and 

C, = —(2a/B8) cos 6 

This is the coefficient of pressure for the upper side of 

in infinite flat plate at an angle of attack a cos @. 

V) The Influence of the Ring on the Pressure Distribution 
on the Body 

The ring directly affects the pressure on the body in 

the region B(R — 1) <x </+B(R—-1 For larger 

values of x, the pressure distribution is influenced also 

by the vortex sheet that extends from the trailing edge 

When the ring is cylindrical, then g) = 0 

We assume 

f the ring. 

ind we need consider only the potential ¢). 

that the vortex sheet is nearly cylindrical, and, there- 

lore, we are able to satisfy the boundary conditions on 

the sheet at r = R. We assume that the potentials 

in Eqs. (4.1) and (4.7) hold for the region downstream 
ol the trailing edge. Additional potentials are added 

TABLE | 

. Va) L(s) L(s)/s (2) M(s)/2? 

0 1.000 00000 1.000 +0000 «50000 
0.2 ~89627 218983 +9492 201796 4912 
Ou © 79576 235926 ~ 6982 06913 243205 
0.6 69560 250829 ~8472 214265 + 39625 

6 «60006 ~63780 +7973 223365 + 36508 
1.0 «51064 274872 2 7487 233253 +33253 
1.2 242829 «84253 +7021 +43608 » 30283 
1k +353% 292055 26575 «53662 «27379 
1.6 28661 98447 26153 63292 24723 
1.6 222738 1.03570 5754 71919 «22197 
2.0 217559 1.07592 - 5360 + 79604 +19901 
2.2 «13089 1.10641 - 5029 85933 «17755 
22k -09275 1.12872 +4703 -91108 15817 
2.6 +06067 1.14392 +4400 94bLO «14030 
2.8 203405 1.15335 419 97LML «12426 
3.0 01232 1.15786 3860 98680 10964 
3-2 - 00507 1.15857 -21 99163 20968L, 

to satisfy the boundary conditions of the continuity of 

pressure and flow direction across the vortex sheet. 

Since the potentials already determined in Eqs. (4.1) 

and (4.7) satisfy the condition that the flow be tangen- 

tial to the ring of radius R, then the condition that the 

flow direction be continuous at r = R reduces to 

¢, > «= ¢, i) (5.1) 

at r = R, where ¢ and ¢'” are the additional poten- 

tials that vanish when x < / for the regions outside 

and inside of the vortex sheet, respectively. The 

condition of the continuity of pressure then requires 

that 

gir” + oe = 1 (5.2) 

atv = R, where ¢;'” and ¢;‘" are the potentials given 

in Eqs. (4.7) and (4.1) for the regions outside the ring 

and inside the ring, respectively, for x < /. Applying 

the Laplace transform to Eq. (5.2) vields 

a +e = O' +e (0.3) 

atr = R. For additional potentials we choose 

gy’ = K\(pBR) fo pie 4 (5.4) 

oe = [I(pBr)K,'(pB) — 11'(pB)Ki(pBr) |ge(pie 

or 

¢ = x (1) go( pie ie oD.) 

is seen to satisfy the boundary 

condition on the body—namely O¢\", Or = O atr Ly 

so we need to consider only the boundary conditions on 

The interior solution 2 

the vortex sheet. Eqs. (5.1) and (5.2) yield 

PBK, (pBR)fo(p) — x’ (R)ge(p 0 

Ki (pBR)fo(p x(R)go(p is L oe 

Solving for fo(p) and go(p), we obtain 

: [ei $1 Ix’(R 

“Ki (pBR)x'(R) — p8Ki'(pBR)x(R 

¥1 ¢¥ 

'[Ki(pBR)]/ [p8K1'(pBR) ]!— [x(R)/x’(R) ]) p8K1' (paR) 
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BR 

Fic. 2. Lift function for the ring exterior. 

Since 

l Ki (pBR) 

-_* (: 7 ze pBKy'(pBR) 

and 

gi? = —4f[1 — (1/R2)]x(R){/x’(R) 

we have 

e "fo(p) = [1 — (1/R?)]/ [pBKi(pBR) ] 

Similarly 

eM ga(p) [1 — (1/R?*)] 

is poll (pBR)Ky'(pB) — I'( ps) Ki(pBR) | 

Substitution into Eqs. (5.4) and (5.5) reveal that the 

additional potentials are the negative of the potentials 

given in Eqs. (4.1) and (4.7). Therefore, downstream 
] 

of the characteristics « — B(r — R) = and x + 

B(r — R) = / shown in Fig. 1, the cross-flow potential 

is identically zero. Therefore, the wing influences 

those pressures affecting the lift and moment on the 
body only in the region 

BR-1)SxS/1+ BR —-!1 

To compute the pressure coeflicient on the body, it 

is necessary to differentiate Eq. (4.1) with respect to 

xandsetr = 1. Hence 

C, = —2(0¢)/0x)a cos 6 

2a cos 6(R? — 1) 
C, = ; x 

, 27i1R? 

f rm) e** (T1(p8)Ki'(pB) — Th’'(p8) Ky (pp) |dp 

PBL’ (pBR)Ky'(pB) — T1'(pB)Ky'(pBR)| es 

RONAUTICAL SCIENCES APRIL, 1985365 

2a cos 4(R? — 1) 

2a 1B7R? 

a | 

. ‘dp 

Ja-io P'th'(pBR)
Ky'(p8) 

— Li’ (p8)Ky' (pap 

Substitutin
g 

the first term of the asymptotic
 

expansj 

for J,‘ and A,’ yields for the integrand 

B(R l \ ri(e’ : p) t 1 (e x(R+1 by) ] 

B(R — 1), G, 

can be replaced by the contour consist; 
Thus for x - = 0, since the contoyr , 

i~ toa+1¢ 

of a semicircle in the right half plane; then the integ, 

vanishes as the radius of this semicircle goes to infinit 

For x > B(R 

half plane consisting of a line paral] to the imaginar 

|), we take the closed cop* our in the] 

p-axis and a semicircle of ineres sing radius. We th 
Vs ‘ > > cy 1c 4 bs . . evaluate the residues at Ue poles on the imaginar 

p-axis. Letting p "~. Vields 

f la cos #(R? 1) ] 
C, = —— , " — xX 

m™B"R 21 

y ie'** dy 

J iat dN? [S1/ (ABR) ¥7'(AB) = Jy/ (AB) Y1' (XBR 

By steps similar to the computation of c, for inside th: 
ring, we finally obtain 

Sa cos 6(R? — 1) SIN My oe C, = 
: 17B3°R ae by”, 

where u, is the mth root of Eq. (4.5) and 64, is given i 

Eq. (4.4). by their asymptot 

values vields 

Replacing yu, and 4, 

C= ta cos 6(R? — | <> sin N7Z 

TBR nal n 

where z = x/[8(R — 1)]. Finally 

Cc, = —/2acos6é(R+ 1) (8?R ’ | [x — 28(R - 1 
a(R — 1) <x <38(R—1 5.1 

VI) Approximate Formulas of Lift and Moment for th 
Cylindrical Ring of Zero Thickness 

With the above analysis, it is now possible to con 

pute the lift and moment on the ring and on the bod! 

The lift Z on the wing is given by 

i 7: . : : 

= + | C, R(x) cos 6 dédx (0 

(] 2)ypiT° J0 70 

where the positive sign is taken for the inside surface 

the ring and the negative sign for the outside surface 

Using Eq. (4.6) and the fact that R(x) is the constatl 

value R, we obtain for the contribution to the lift of th 

ring interior surface 

i, 2r(R + lja fi 1d, 

sili | Ix — B(R- Dk 
(1/2) yp" B°R Jo 

Let //8(R — 1) = rand x/[8(R — 1)] =¢. Then 

Bat, 
TAs 

For the 

| The fun 

Values f¢ 

to the v: 
'*) 
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3. The slope of lift coefficient for cylindrical ring alone. 
Asymptotic formula 

if 9r(R+ 1) (R—- 1)? ’ 
(f — 1 )dt = 

\ypAl R J 0 

r(R + 1) (R — 1)2ar(r — 2)/R 

for0 << 7+< 2. The contribution to the coefficient of 

lift is found by dividing the above equation by 2R/, 

t for the 

to col 

he bod 

irface 

surface 

constant 

ft of th 

Then 

the projected area of the ring. Thus 

(2BR?),0<7r<2 (6.2) Civ; = ma(R?* L) {2 — + 

For the exterior of the ring we obtain, using Eq. (4.8), 

—_ L o_ 

Cy /2) pM? (2RI 
| Pra (R* — 1) [ V ( x ) ie 

26R?/] 0 BR 

: mra(R? — 1) f/(BR) 

= V(s)dz 

’ ma(R? — 1) LZ [//(BR)| me 
; ( LW, = (0.0) 

BR [//(BR) | 

| The function L{//(8R)] is tabulated in Table 1. The 
Values for L(z) were found by apply ‘ng Simpson's rule 

to the values of V’(z) in column 2 of Table 1. (See Fig. 
9 
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Fic. 4. Slope of lift coefficient for the cylindrical ring and 
cylinder combination computed from asymptotic formula. Ring 
radius = 2, ring length = 1.5, cylinder radius = 1. Curves I 
and II represent the lift for the ring and cylinder combined and 
for the ring alone, respectively Dotted line gives dC,/da for 
rectangular flat plate of same aspect ratio as projected area of 
ring A = 2R/l = 8/3 
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Fic. 5 Slope of lift coefficient for the cylindrical ring and 

asymptotic formula cylinder combination computed from 
cylinder radius = 1 Ring radius = 2.5, ring length = 1.5, 

Curves I and II represent the lift for the ring and cylinder 
combined and for the ring alone, respectively Dotted line gives 
dC./da for rectangular flat plate of same aspect ratio as pro- 

2/1 = 10/3 jected area of ring A = 2R 

For the coefficient of lift on the body, we obtain 

—— L _ ° 

‘8 (y/2)pM2 2RI ORI 

cos 6 dxd49 

ex 7+3(R--1 

| | C, 

/70 /7 B(R-1 

_ 2ra(R + 1) f ee” te = 28(R — 1)]dx 
J BK 

B°R'] ; 

Cre = }[r(R° — 1)]/(28R™*)} (7 — 2), 

QO<7r<2 (6.4) 

The total lift coefficient for the ring alone is found by 
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combining Eqs. (6.2) and (6.3) The quantity (g/m) 

(dC,/da) can be expressed as a function of R and the 

variable z = //BR 

8 dCz _ (1 ” =) |“ += ZR | 

nr da yi 2(R — 1) 

For the range of 

namely, 

This expression is plotted in Fig. 3. 

values considered, the curves (8/7) (dC,/da) for con- 

stant R are nearly straight lines. The maximum for 

(dC,/da) is found for R infinite. Since lim 
20 

(0/7) 

1, we have L(z)/z 

B(dC,/da) = 27 

This is 7 2 times the value obtained for a flat plate of 

infinite aspect ratio. It also agrees with the results of 

Mirels® for the solution of a ring alone. 

For a constant ring length / = 1.5, the coefficient of 

lift when R = 2, 2.5, and 3 is compared in Figs. 4, 5, and 

6 with the lift coefficient for a rectangular flat plate 

having the same geometry as the projected area of the 

ring 2R/. 

flat rectangular plate is 

From reference + the quantity dC,/da for a 

dC,/da = (4/8) {1 — [1/(28A)]} 

where A = 2R/ is the aspect ratio. The wing alone 

appears to be better than the rectangular plate for high 

values of 8 and R and is worse than the rectangular 

wing for 8 less than about | where the approximations 

we have made are not valid. The difference, however, 

isnot large. The lift of the combination ring and cylin- 

der is not as high as that for rectangular wing. The 

quantity dC,/da for the cylinder only is plotted in 

Fig. 7 for R = 2,2.5,and 3. For R > © the coefficient 

of lift vanishes. The moment acting about the point 

on the axis at //2, the midpoint of the ring, is 

m *= ee / 
(= + | C,cos@ix — R(x)dxd6 

¥/2 pA 0 /J0 2 e 

where the positive sign is used on the outside of the ring 

and the negative sign on the inside. The moment may 

be written as follows 

: | C, cos 6xR(x)dxd0 4 
(y/2)pM* J0 J°0 

] » . 

| | ( = cos 6 R(x)\dxd@ (6.5 

“wv 70 

Noting the difference in sign for the lift, we see that 

Eq. (6.5) can be written 

m 7 m, l is 

y/2)pM? — (y/2)pM? . 2 (y/2)pM* 

Where m, denotes the moment about the point « = 0 on 

the axis. The coefficient of moment then becomes 

Cm, 1/2 = Cm + (1/2)Cz 

Thus, by evaluating the moment about the point x = 0 

we can also obtain without difficulty the moment about 
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the midpoint x = / 2. A similar analysis about the 

quarter chord point yields 

we y4= ee + (1 1)C, 

The approximate moment about the leading edge con- 

tributed by the pressures on the interior surface of the 

cylindrical ring is, from Eqs. (6.5) and (4.6), 

Mo 2ra(R+ 1) ¢ 

a m x[x — B(R — 1) ]dx 
(y/2)pM B°R iP 

= | [ra(R + 1)B(R — 1 )3] 3R}7r7(27 —3) 

The contribution to the coefficient of moment for the 

interior surface of the ring is 

Cm; = {[wa(R? — 1)]/68R2} (27 — 3),0< 7 <2 
(6.6 

For the outside surface of the cylindrical ring 

Mo 2ra(R* — | )  - # 
= — x] dx 

(y/2) pM BR Jo BR 

7] BR 

= — IraBR(R? — | 2V(s)dz 
7 

The contribution of the pressure on the outside sur- 

face of the ring to the coefficient of moment about the 

Ga M 
BR? eR) |/\erR 

/ 7 BR 

u( ) V(2)d2 (6.7 
BR) Jo 

This was computed by using 

leading edge is 

where 

and is found in Table 1. 

Simpson’s rule and the values of I’(z) given in Table | 

and in reference 3. (See also Fig. 8. 

The pressures on the body are influenced by the ring 

in the region B(R — 1) <x </+ B(R — 1). The 

coefficient of moment about the leading edge of the 

‘ cylindrical ring on the axis is, using Eq. (5. 

mM mra(R + | 

(y/2)pll*(2R/*) B°R 
1+8(R—1 

x|x — 28(R 1) |dx 
0 

ma(R*? — | ( *) 
= - e=-=) O¢r<2 6.8) 

3BR T 

By combining Eqs. (6.7) and (6.6), we obtain for the 

derivative of the coefficient of moment with respect to 

a about the leading edge of the ring alone 

B dC, (R? — 1 bes Rz | wit 
———— 4 . 9) 

r da R* Z 2 3R-1)] 

This is plotted against z for R = 1.5, 2. 2.5, and 3 in 

Fig. 9. For the range of values considered, the quan- 

tity —B(dC,,,/da) can be represented nearly by straight 

lines. In Fig. 10, the slope of the coefficient of moment 
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about the center chord point is plotted for R = 2, 2.5, 

and 3 and for / = 1.5. The coefficient of moment 

is seen to decrease with increasing R and vanishes 

for R— o. Since lim J/(s)/2? = 1 2, Eq. (6.9) be- 
oS) 

comes 

dC,,/da = —7/B 

This is 7/2 times the value for the moment about the 

leading edge of a two-dimensional flat plate. This is 

plotted against 8 in Fig. 11 and compared with the 

corresponding values when R = 2, 2.5, and 3 for / 

Lo. 
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The Application of Finite Difference 
Methods to Boundary-Laver Type Flows 

* 

W. T. ROULEAU? anp J. F. OSTERLE+ 

Carnegie Institute of Technology 

ABSTRACT 

Finite difference techniques are applied to the problem of 

Jightly viscous, incompressible, constant pressure flow confined 

boundaries (solid or porous) on which the ‘‘no-slip’’ condition 

prevails. The “ 

developed by Friedrich and Forstall, which is unstable at bound 

iries on Which there is no slip, is extended to include this case 

stepwise’’ representation and method of solution 

An always stable ‘“‘implicit’’ form of the difference equations is 

developed, and for it methods of solution by relaxation and iter 

ition techniques are presented. Both the stepwise and implicit 

procedures are suitable for programing on digital computers 

Several original solutions are obtained by these methods, in- 

juding the important problems of the boundary laver over a 

flat plate with an arbitrary distribution of suction and the slot- 

jet issuing adjacent to a piate into a moving stream 

List OF SYMBOLS 

= characteristic dimension 

= subscript denoting jth column of mesh points 

subscript denoting kth row of mesh points 

= length of plate 

= number of points in column 

= number of points in column 

Q = residue at a mesh point 

velocity in x-direction 

dn = maximum u-velocity at beginning of computation re- 

gion 

= maximum velocity in jet 

u = uniform stream velocity 

[ = dimensionless velocity in .Y-direction 

= velocity in y-direction 

velocity at surface of porous plate 

’ = dimensionless velocity in )-direction 

downstream coordinate 

distance from leading edge to beginning of porous re- 

gion 

dimensionless downstream coordinate 

transverse coordinate 

dimensionless transverse coordinate 

= displacement thickness of boundary laver 

€ coetlicient of eddy kinematic viscosity 

kinematic viscosity 

INTRODUCTION 

I MANY PROBLEMS IN FLUID DYNAMICS described by 

Prandtl’s simplification of the Navier-Stokes equa 
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tions and the continuity equation, the boundary con- 

ditions are such that exact solutions have not been 

obtained. One such problem is that of longitudinal 

flow over a porous flat plate when there is an arbitrary 

distribution of normal velocity at the plate surface and 

when an initial boundary layer is present at the be- 

ginning of the porous region (see Fig. 1). This prob- 

lem is of practical importance because porous surfaces 

through which suction is applied have been recognized 

as being useful in keeping boundary layers laminar 

and thus reducing drag.! Schlichting? was able to 

develop an exact solution for porous plate flow, but 

only with the restrictive conditions of constant normal 

velocity at the plate surface and porosity beginning at 

Another problem that 

two- 

the leading edge of the plate. 

has defied exact treatment is the mixing of a 

dimensional jet and a parallel uniform stream when the 

jet discharges parallel and adjacent to a flat plate 

(see Fig. 2). This problem is of immediate importance 

in the design of gas turbine combustors in which the 

liner is cooled by means of air injection between the 

combustion gases and the liner from circumferential 

slots. 

This paper is concerned with the development and 
solution of finite difference representations of the two- 

dimensional form of the Prandtl and continuity equa- 

tions. A difference representation similar to that 

developed by Friedrich and Forstall*® for axially sym- 

metrical flow and having similar stability criteria is 

developed, and for it the ‘‘stepwise’’ method of solution 

————— 
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Fic. 1. Porous plate with suction. 
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PLATE 
Two-dimensional jet discharging adjacent and parallel 

to flat plate into parallel uniform stream 

used by them, extended to include the case where the 

longitudinal velocity is zero at a boundary, is pre- 

sented. An “‘implicit’’ difference representation is de- 

veloped which is always stable, and for it solutions by 

relaxation and iteration methods are described. 

FUNDAMENTAL EQUATIONS 

The flows to be considered here are described by the 

Prandtl simplification of the Navier-Stokes equations 

[u(Ou/Ox)] + [v(Ou/Oy)] = v(0°u/ Oy") (1) 

4 yt 

a ae 
| ; | 

,_| | 
(O,k+ 1) (j, kel) (j+l, k+l) 

| 
} 

(0,k) T G-i) (j,Q  (j+l,k) 
| | 

— a 
(O,k-1) | . (j+,k-1) 

Ciz) ©2) U2 22 v rT 
ax AY 

| | { 
ci) 0) Un @) “1 | 

A | 
(-1,0) (0,0) (1,0) (2,0) ¥ (j-1,0) (7,0) (j+1,0) x 

Fic. 3. Designation of mesh points. 
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and the continuity equation 

(Ou /Ox) + (Ov/Oy) = 0 9 

where the x-axis is taken in the direction of the main 

flow, u is the velocity in the x-direction, v is the velocity 

in the y-direction, and y is the kinematic viscosity. 

Strictly speaking, Eq. (1) applies only to nonturby 
lent flows. However, the same equation with mean 

velocities being used and the kinematic viscosity, », re. 

placed by the coefficient of eddy kinematic viscosity, « 

has often been applied to the turbulent cases of thy 

flows here considered,‘~® yielding fairly good results 

Thus the methods developed in this paper may be 

applied to such treatments of turbulent flows provided 

that « is known as a function of position. 

Since the Prandtl equation does not describe the 

flow in the immediate vicinity of a velocity discon- 

tinuity, in this paper such discontinuities (as at jet 

outlets) are not employed as idealizations of real prob- 

lems but rather the actual existing boundary layers 
are taken into account. 

Eqs. (1) and (2) may, for convenience, be put into 
dimensionless form by use of the variables 

Y = y/a 

X = vx/a7n, 
3 

i] =e 

|" = aviv 

where a is some characteristic dimension (for example, 

the width of a nozzle or a measure of the initial bound 

ary-layer thickness) and u,, is the maximum 1-velocity 

at the beginning of the region (say . = 0) where the 

difference forms of Eqs. (1) and (2) are to be applied 

Upon substitution of the variables, Eqs. (3), Eqs. 

and (2) become 

[L(0U'/oX)] + [VOU /OY)] = ol oY? 

(OU/0X) + (OV/OY) = 0 

FINITE DIFFERENCE REPRESENTATION OF EQUATIONS 

For the development of the stepwise and implicit 

difference representations, a rectangular mesh is super- 

posed on the flow field having fixed axes Y and J, and 

the partial derivatives in the Prandtl and continuity 

equations are approximated by difference quotients 

The subscript pair (j, k) is used to denote the mesh 
point in the jth column (J}-direction) and the Ath row 

(X-direction). (See Fig. 3.) 

Stepwise Form 

The approximations for the stepwise form are 

OU/OX = (Ujsia — Uj 5%)/AX 

QU/OY = (Usa — Ujx-1)/2AY | 
0) 

O7U/OY? = (Ujnu — 2Ujn% + 1) /(AY) 

OV /oY = (Vyas 443 = V 4432) (AY) 
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FINITE 

Substitution of these approximations in Eqs. (4) and 

5) gives the stepwise equations 

[ — U;, l 1—- U;, 

AX 2AY 

l »— Wy. + ee 
{ ) 

(AY)? 

( l AX] + 
(Vyas — Vjarx)/AY] = 0 (8) 

If, for some j, Ul’; and 1’; are considered known for 

all k, Eq. (7) can be solved for U’j,;, for all k, and with 

these values Eq. (8) yields Vj,;,41 in terms of Vj4) 4, 

so that if 1’;,1,, is known for some k, say k = O (per 

haps from a boundary condition), |’;,; .,; can be deter- 

mined in ‘‘stepwise’’ fashion for successive k’s, starting 

with the known value J’j,;°. A knowledge of UU’), and 

"thus leads to a knowledge of U4; and V 44; x. 

[his stepwise procedure is carried out in the calculation 

of the velocities in successive columns downstream. 

Implicit Form 

In the implicit form the L’ difference quotients in 

the }-direction are taken in the (7 + 1)th column as dis- 

tinguished from the jth column in the stepwise form. 

These approximations are 

OU/OY = (Ujsiag — Ujena) /2A4Y | 

OU/OY? = (Ujs1 ae — 2 js + (9) 

U yas. 1) ae 

which, together with the appropriate difference quo- 

tients of Eqs. (6), give the implicit equations 

/ l l I U js — Ossie 

| AX 2AY 

l ] 2U 1. 7 U 

= (10 
(AY)? 

l U AY] + 

{( | _—_ ] 1 AY] = 0 (Ss 

In Eq. (10) there are three unknowns— L’;,;.;, 

Unies, and Uj,;,1. If there is a boundary at 

Y = 0 (k = 0) where U’,,,.¢ = O, a sufficient number 

of points .V is taken in the column j so that the upper- 
most point (7 + 1, V+ 1) of Eq. (10) lies in essentially 
undisturbed fluid. Thus Uj4;.y4; is known, and in 

the .V simultaneous equations of the form (10), there 
are only .V unknowns l’;,;,, that may be solved for by either a relaxation or iteration procedure. If there is 

not a wall at VY 

lorm (10) must be set up for the region below the Y- 

= 0, then, of course, equations of the 

axis with the lowermost point being in essentially 

undisturbed fluid as well as the uppermost point. 

When the known velocities at these two extreme points 

are substituted in the equations, there is obtained a set 

of MV simultaneous equations in . unknowns. 
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In the iterative type solution the selection of .V is 

more or less of a trial process; .V should be large enough 

so that l’\,;, y-v* 1s arbitrarily close to the free-stream 

velocity, the value of N* depending on the accuracy 

desired. Alternatively, once the computations have 

been carried out for the U’),;,,’s (k = 0,1,...N+ 1 

the value of .V could be increased, the computations 

again performed, the two sets of / x Ss compared, 

and the values accepted if they agree as closely as de 

sired. In a relaxation solution, .V is determined di 

rectly because the number of points may be increased 

at will during the relaxation until the velocity of the un 

disturbed stream is attained (or approached as closely 

as desired) at the last point. 

In the solution of the simultaneous equations of the 

form (10) by relaxation, the residue, Q),;, ,, at each 

point in the column j + | is given by 

Ujjain — U 
Q +1 = l = 

AX 

che (11) 
(AY)? 

The effect of a change in velocity AU’j,;, , on the resi- 

dues at (7 + 1, Rk) and the neighboring points (7 +4 

1,k+ 1) and (j + 1, k — 1) 1s given by 

AOin « = §(U;s4/AX) + [2/(AYV)*]{ AU jas 

BOs. var = — 10; 2s /2A¥) + 

~~) 
[1 (AV)*} {AU 4s, & f (12 

(1 /(AV)2]{Al 

As is usual with a relaxation procedure, values for the 

Us+1, 
Corrections are then made in these values to reduce 

;S are estimated and residues are computed 

the residues to as near zero as desired. 17),;, .4; may 

then be computed from Eq. (8). The process is re 

peated for successive columns downstream, 

In the solution of the simultaneous equations of form 

(10 by iteration, l’;,, ,; mlay be solved for in each 

equation to give 

| y Un) ag 
(AY)? 2AY a ae Tia 

where the l’; ,’s and |, ,’s are known. Estimated 

values are first assigned to the / , s and substituted 

in the set of simultaneous equations of the form of 

(13) to obtain more nearly correct values. These values 

are next substituted to obtain a better approximation 
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Fic. 4. Wake behind flat plate. 

for the Uj41, ;'s; this process is continued until there is 

is no further significant change in the L’j,;, ,’s. Co- 

efficients are then computed for the points (j + 1, k) 

once the Vj,;, ,’s have been computed from Eq. (8), 

and the Uj, ;,’s and the Vj,2, .’s computed. This 

procedure is followed for successive columns down- 

stream. 

An advantage of the iteration process is that it may 

be quickly carried out with a digital computer. 

STABILITY 

In a stable difference representation ‘‘round-off”’ 

errors occurring in the calculations either remain con- 

stant or decrease; if instability occurs, the round-off 

errors grow and eventually cause oscillations in the cal- 

culations. The technique of stability analysis referred 

to here is due to J. von Neumann, as explained by 

O’Brien, Hyman, and Kaplan.’ 

Stability of Stepwise Equations 

It is found that for Eq. (7) to be stable the following 

inequalities must be satisfied. 

' (AY)?] < 1/2 ) 

V. JAY < 2 

AX/{l 
(14) 

It can be shown that Eq. (8) is stable at least at all 

points where Eq. (7) is stable. 

At points on a boundary, say k = 0, along which 

U;, 0 = 0, Eq. (7) is obviously unstable regardless of 

the mesh geometry. But Eq. (8) is stable at such a 

boundary since U;, ¢ and Uj, 9 are both zero there 

and thus contain no round-off error; consequently, the 

error in V;,;,; is the same asin V;,;,0. Thus the step- 

wise equations can be used to calculate flows character- 
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izcd by the presence of a boundary on which the no-slip 

condition prevails provided that the stability criteria 

14) are observed at all mesh points in the region ex 

cept those on the boundary. 

Stability of the Implicit Form 

The stability analysis shows that Eq. (10), and hence 

Eq. (S), is always stable, regardless of mesh size or ve 

locities. Thus Eq. (10) is useful when it is desired to 

determine velocities near to a boundary where / () 

and still have the computations progress rapidly down- 

stream. Also, the implicit equations can be applied to 

a jet discharging into a stationary medium, for which 

inequalities (14) show the stepwise equations to be 

unstable. 

INHERENT ERROR 

The inherent error in the difference Eqs. (7), (S), and 

(10), which arises from the replacement of derivatives 

by difference quotients, may be determined by the 

methods of reference 8 and is found to decrease as the 
mesh size decreases, as would be expected 

EXAMPLE 

As a check on the accuracy of the numerical methods 

developed in this paper, they are applied to the problem 

of the determination of the velocity distribution in the 

laminar wake behind a flat plate immersed in a uniform 

stream parallel to the direction of flow (as in Fig. 4), 

since for this problem an analytical solution’ (due to 

Goldstein) exists. 

For the numerical calculations a boundary condition 

on | is necessary; from symmetry it is evident that 

at 1} = 0, V = 0. 

taken on the X-axis. 

where the difference equations are first applied, L’ = 0, 

Thus, one row of mesh points is 

At the trailing edge of the plate 

and, consequently, the stepwise equations cannot be 

This stability 

difficulty is circumvented by use of the always stable 

used because they would be unstable. 

= 

— aa a “zn ' 

a a 

NUMERICAL _,) 
SOLUTION en 

GOLDSTEIN'S | 1 
SOLUTION 

2 SS a ae 2 

U 

Fic. 5. Wake behind flat plate. U velocity distribution at 
X = 0.3645. 
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from the leading edge of the plate measured 

mplicit equations, solved by relaxation, to compute 

the velocities in the first, second, and third column of 

ints; then a transition is made to the stepwise equa- 

ions, Which are more easily solved by hand. 

1 ft. per 

For the 

dimensions 

The arbitrarily chosen parameters are: uo = 

.,v = 1ft.* persec.,/ = 1ft., anda = 1 ft. 

the the 

0.05: for the stepwise solution AY = 

relaxation solution mesh has 

AY = 0.4, AY = 

1, AX 0.025 (except for the last interval, where 

AY = 0.0145 

The results of the numerical analysis are compared 

ith the analytical solution in Fig. 5 at the dimension- 

0.3645. 

sis indicates that with a smaller mesh the agreement 

ss distance Y = The inherent error anal- 

uld have been better. 

PROBLEMS 

1, Boundary Layer over a Porous Plate 

rhe velocity distribution over a porous flat plate in 

ngitudinal flow with an arbitrary distribution of nor- 
il velocity, v(x), at the plate surface when the poros- 

\y begins at some distance, say x, from the leading 

ige (see Fig. 1) may be calculated by the numerical 

procedures developed, the stepwise procedure being 

ed for this particular case. 

| For the numerical calculations it is arbitrarily as- 

‘umed that v(x) is constant and the flow is laminar; 

ider these assumptions the problem is solved numer- 

peally in dimensional form for the velocities and dis- 

| lacement thicknesses (6*), and the results are compared 
mith Schlichting’s? exact values in Table 1. 

Arbitrarily assume that xp = 0.005 ft., w = 1.000 
Pt. per sec., ¢ — 0.250 ft. per sec., and vy = 0.1 ft.* per 

Fe. where x) is small enough to approximate Schlicht- 

mgs geometry, yet large enough so that the Blasius 
Poundary-layer solution”, 1! 

Wal 
used to obtain the initial 

ues in tne difference equations—is valid. The value 
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PABLI 

Velocity Distribution in Flow over Porous Plate with Suction 

005 ft 0 2 8 

cht Schlicht nun 

Blasit i r a n ca 

t r r t y - 

( ) ( 0 0 

0.572 ) 308 0 ) 62 ) 7 

). 921 2 0.552 2 ) S7F 0.84 2 8 7 
0.996 0.7 0.70 3 9 ) 0.92 

O00 4 OR 0.814 4 ee) 0 77 

000 0.930 0 S84 5 0.49 0.4402 0 GST go 

0 70 0.928 6 000 0.997 f 0.99 102 

7 0.989 0 7 000 0.999 7 0.998 Wt 

~ 0.99 0.97 8 000 000 S ) Ss 

0.49 0.984 wn 149 

10 1.000 0.990 000 100 

000 0.994 000 100 

2 1.000 0 17 2 000 0 

OOO 1) Gas 

numerical 0.1713 ft numerical 0.3088 ft. * (numerica 0.37 

Schtichtin 0.1908 ft Schlichting 0.3490 ft Schlichting 0.398 

of v, although physically too large, provides for con- 

venience in the computations; the mathematics remain 

valid and the results can still be compared with Schlicht- 

ing’s. At the beginning the mesh has the dimensions 

Ax = 1/400 ft., Ay 
thickens downstream the mesh must be made larger to 

1/25 ft.; as the boundary layer 

comply with the stability criteria. The final mesh 

has the dimensions Av = 1/4 ft., Ay 1 /3.125 ft. 

B) Two-Dimensional Jet Discharging Adjacent and 
Parallel to Flat Plate into Parallel Uniform Stream 

The stepwise or implicit equations may be applied 

to find the velocity distribution resulting from a two- 

dimensional jet discharging parallel and adjacent to a 

flat plate from a slot into a uniform stream. (See 

Fig. 2. 

In this problem, which is solved here by the stepwise 

equations, the velocity distribution at x = 1/50 ft. is 

calculated for illustration. It is assumed that the fluid 

has a parabolic velocity distribution at the exit of the 

{ 

3 \ i—— 
2 ~~ od 4 —<— "i 

— pt 
2 a 

a ae 
ie) 4 8 1.2 1.6 2.0 2.4 2.8 

u (ft./sec.) 

Fic. 6. Two-dimensional jet discharging adjacent and parallel 
to flat plate into parallel uniform stream. u velocity profile 
at x = 1/50 ft. 
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slot of width a = 0.250 ft. and that the uniform main 

stream of the same fluid has an initial laminar boundary 

layer at the beginning of the mixing region correspond- 

ing to that which exists at a distance of 0.01 ft. from 

the leading edge of a flat plate. Also it is assumed 

that: wo, uniform (or secondary) stream velocity, = 

1.0 ft. per sec.; #,,,, Maximum jet (or primary) stream 

velocity, = 3.0 ft. per sec.; and v = 0.1 ft.” per sec. 

The profile at 

x = 1/40 ft. is shown in Fig. 6. 

numerically calculated u-velocity 

CONCLUSIONS 

It has been shown that the “stepwise” and ‘“‘implicit”’ 

difference forms of the Prandtl and continuity equa- 

tions developed herein are suitable for the determination 

of the velocity field in fluid flows described by those 

equations. The stepwise form allows immediate com- 

putation of velocities at successive points but is limited 

in applicability by stability criteria. The implicit 

equations have no stability restrictions whatever; 

by hand they may best be solved by relaxation, but if 

a digital computer is available they may be rapidly 

solved by iteration. 

Two original solutions have been obtained by means 

of the finite difference forms: 

(1) The velocity distribution in longitudinal flow 

over a porous flat plate with an initial boundary layer 

and an arbitrary distribution of normal velocity at the 

plate surface (worked for a constant suction velocity, 

although any other distribution of transverse velocity 

could have been handled just as easily). 

(2) The velocity distribution in the flow field of a 

two-dimensional jet discharging adjacent and parallel 

to a flat plate into a uniform stream. 
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A Provisional Analvsis of Turbulent 
Boundary Lavers with Injection’ 

JOSEPH H. CLARKE,* HANS R. MENKES,? anp PAUL A. LIBBY** 

Polytechnic Institute of Brooklyn 

SUMMARY 

Prandtl’s analysis of the incompressible turbulent boundary 

layer over a flat plate is extended in this report to include the 

effect of uniform, transverse fluid injection. The nondimensional 

parameters characterizing such a flow are deduced by dimensional 

reasoning. A velocity profile is generated by considering the flow 

over a plane wall; this distribution reduces to the universal log 

law when the mass transfer is zero. The expression also serves to 

relate the local skin friction to the boundary-layer thickness 

When these relationships are used in conjunction with the von 

Karman integral, the problem becomes mathematically specified 

Since only a limited amount of experimental data is available, 

it is necessary to assign to certain parameters that arise in the 

velocity profile the constant values they have for no mass transfer. 

When more measurements are completed, it may be possible to 

adjust these parameters as or if required 

The results give the variation of average skin-friction coefficient 

with the injection ratio and the Reynolds Number based on the 

streamwise coordinate. The agreement between these results and 

the experimental data available is found to be satisfactory. The 

significant reductions in skin friction, and therefore in heat trans 

fer, to be realized with small rates of injection are indicated 

SYMBOLS 

| = arbitrary function of 1,/U, 

B = arbitrary function of V)/U’; 

“ty = arbitrary function of V,/U, 

Cr = average skin-friction coefficient 

D = drag per unit span 

F = integral defined by Eq. (20 

= arbitrary function of V,/U; 

= mixing length 

= time mean of static pressure 

R = Reynolds Number based on x 

Ky Reynolds Number based on 3 

§ time mean of x component of velocity 

( fluctuation of x component of velocity 

friction velocity defined by Eq. (8 

V = time mean of y component of velocity 

fluctuation of y component of velocity 

6 = boundary-layer thickness 
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n = nondimensional thickness defined by Eq. (13 

J = momentum thickness 

mm = dynamic viscosity 

v = kinematic viscosity 

p = mass density 

T = Reynolds shear stress defined by Eq. (4 

oo = integral defined by Eq. (28 

¢ = nondimensional velocity defined by Eg. (12 

y = integral defined by Eq. (28 

= time mean at a spatial point 

( = evaluated at the outer edge of the laver 

( = evaluated at the surface 

INTRODUCTION 

pepe IS CONSIDERABLE INTEREST in the application 
of the sweat-cooling technique to the solution of 

some of the critical heat-transfer problems associated 

with the flow of high energy gas streams within propul 

sion devices and around high-speed missiles and air 

craft.'~* This technique involves the injection of a 

gaseous or liquid coolant through a permeable wall and 

leads to the establishment of a thick, heat-insulating 

layer between the high energy outer flow and the sur 

face. 

Studies of skin friction and heat transfer for the case 

of a laminar boundary layer with injection have been 

carried out in detail and may be considered in good 

order. Most of the analyses consider gaseous coolants 

namely, the same gas as that constituting the main 

stream. Turbulent boundary layers are, however, more 

likely to prevail in the applications for which the sweat 

cooling method is contemplated. First, the gas streams 

in propulsion devices usually involve high levels of 

vorticity and turbulence. Second, permeable walls are 

inherently rough. Third, the influence of continuous in 

jection is destabilizing with respect to a laminar 

boundary layer—especially since the injection may 

actually involve a large number of discrete jets. These 

factors tend to cause early transition to turbulent flow. 

Thus, an estimate of the influence of injection on 

turbulent boundary layers should find technical applica 

tion. Because the physical mechanism of turbulent 

flow still awaits precise, tractable formulation, a sound 

scientific analysis of this phenomenon is not possible. 

However, the earlier semiempirical analyses of turbu- 

lent boundary layers on impermeable walls have led to 

results of engineering utility. © It would seem reason 

able to attempt to calculate the effect of injection on 

turbulent boundary layers by extending these methods. 

It is recognized that detailed and reliable measure- 
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menis are required to establish the validity of any 

such extension. Since considerable difficulty in making 

the measurements is involved, such data might not be 

available for some time. Moreover, the results pre- 

sented here indicate the high degree of accuracy which 

will be required for meaningful experiments. 

In this paper, the classic analysis by Prandtl of the 

impermeable, incompressible turbulent boundary layer 

on a flat plate at zero incidence is extended to include 

the effect of uniform fluid injection in such a manner 

that the results reduce to those of the impermeable 

analysis at each step if the mass transfer is set equal to 

zero. The result of the analysis is the variation of 

average skin-friction coefficient with injection ratio and 

Reynolds Number based on the streamwise coordinate. 

These curves are compared to available data,’ and 

reasonable agreement is found. 

The skin-friction variation can be used to estimate 

the variation of Nusselt Number with Reynolds Num- 

ber and injection ratio if the Reynolds analogy is used. 

Because of the existence of this analogy, attention has 

been restricted to skin friction in the present develop- 

ment. 

THE VELOCITY PROFILE OBTAINED FROM FLOW OVER A 

PLANE WALL 

For the two-dimensional mean flow of an incompress- 

ible, turbulent fluid in boundary layers of small pres- 

sure gradient, the Reynolds equations are reduced, fol- 

lowing Prandtl, to the form 

pein ot lL: OP (9 oo +7) (1 
= = ) 

Ov Ov p Ox Oy 4 oy p 

OP/dy = 0 (2) 

These are supplemented by the continuity equation 

(OU/ox) + (OV/ov) = 0 € 

In Eg. (1) 

T= —pu'v’ (4) 

According to the momentum transfer theory, Eq. (4) 

may be written 

r = pl*?(0U/dy)* (5) 

where / is the mixing length of Prandtl. 

Dimensional reasoning attendant upon empiricism 

indicates that the velocity in the turbulent boundary 

layer under transverse injection is of the form* 

U = U,f[(U,v/»), (Vo/U;-) ] (6) 

and that the mixing length for higher Reynolds Num- 

bers is of the form* 

1 = yg(Vo/Ur) (7) 

In Eqs. (6) and (7) U,, the so-called friction velocity, is 

related to the wall shear stress by 

U,? = v(0U/Oy)o (S) v 

APRIL, 1955 

Since, in the neighborhood of a permeable wall 

V(OU/oy) > U(OU/dx) 

in Eq. (1), it is proposed to idealize the problem to that 

of the one-dimensional flow over a plane wall for the 

purpose of generating a boundary-layer velocity profile. 

It is remarked that the universal log law can be de- 

veloped in the same way. The essential shear aspect is 

retained in such a model. Moreover, impermeabk 

measurements indicate a certain insensitivity of the 

general profile shape in terms of the variables of Eq. (6 

to the precise physical environment. 

With the assumption of no variation with x, Eq. (3 

yields, together with the boundary condition on J’, 

V = Vo = constant 9) 

while Eq. (1) reduces to 

Vo(dU/dy) = d/dy(r/p) (10) 

after neglecting the purely viscous shear contribution. 

Combining Eqs. (5), (7), and (10), one obtains 

Vo(dU /dy) = g*(d/dy) [y*(dU/dy)?] (11) 

After introduction of the nondimensional variables 

g=U/U, (12 

n = U,/v (13 

in accord with Eq. (6), Eq. (11) may be integrated with 

respect to y to yield 

¢=A+t+ Blinn + (1/4¢7)(10/U,) In? 14 

In view of Eq. (6), A and B, as well as g, are to be re- 

garded as functions of j/U’, in general. As is to be 

expected from its derivation, Eq. (14) reverts to the 

universal log law when the injection velocity vanishes. 

TURBULENT BOUNDARY LAYER OVER FLAT PLATE WITH 

UNIFORM INJECTION 

The turbulent boundary layer over a flat plate under 

the action of uniform injection may be anayzed if Eq. 

(14) is assumed to represent the distribution of velocity 

through the thickness. The same expression, when 

evaluated at the outer edge of the boundary layer, 

serves to relate the friction velocity to the boundary- 

layer thickness. Because viscous stresses have been 

neglected, the profile cannot be expected to hold in the 

immediate vicinity of the wall. Indeed, impermeable 

data indicate that the log law fails when 7 is less than 

30. However, Eq. (14) can be extended to serve as an 

interpolation formula in the immediate neighborhood 

of the wall if the arguments of the logarithms are 1n- 

creased by one. This change has little effect outside of 

this sublayer where n7 > 1. After rearrangement, Eq 

(14) thus becomes 

Ui)¢, In?(1 +19 
( 15 

¢g = Bln (1 + Cy) + (1/427)(V0 

where C is, in general, another function of V)/U’,, and 

the subscript one signifies evaluation at the outer edge 

may be 

the for 

ind the 

m alone 

and son 

where 

{s is us 

Irom th 

injectior 

slight, t 

Just as | 

<1) give 

where 



» that 

r the 

‘ofile. 

e de- 

ect is 

eable 

t the 

tion. 

(11) 

with 

14 

e re- 

O be 

» the 

shes. 

VITH 

nder 

Eq. 

city 

vhen 

iver, 

lary- 

been 

| the 

able 

than 

s an 

10¢ d 

> in- 

le of 

Eq 

— 33 

and 

edge 

ANALYSIS OF TURBULENT BOUNDARY LAYERS 257 

TABLE | 

Abridged Table of Functions 

V U; = 0.005 1/0, = 0.010 

F X 10 ® X 10> y X 10 F X10 b xX 10 y 10 
15 0.7072 0.00906 0.04468 1.272 0.00798 0.0328 

Q5 1.081 0. 02246 0.08446 2 460 0.02071 0.0596 

65 1.702 0.05708 0.15990 5.412 0.05672 0.1045 

325 2.778 0.14386 0.2978 14.50 0.1616 0.181] 

185 3.768 0.2473 0.4264 29.85 0.3102 0.2490 
GR5 $ 950 0.3953 0.5781 63.65 0. 5602 0.3229 

R85 6.147 0.5603 0.7227 126.8 0.9034 0.3882 

1.085 7.335 0.7400 0.8617 248.5 1.358 0.4469 

1,285 8.539 0.9340 0.9960 179.0 1.962 0.5002 

1,485 9.786 1.139 1.126 915.9 2.767 0.5486 

1,685 11.01 1.356 1.253 1,995 3.871 0.5930 

1,885 12.29 1.584 1.377 4,499 ». 440 0.6342 

2,085 13.59 1.823 1.498 11,440 7.778 0.6723 

2,285 14.94 2.072 1.617 35,170 11.55 0.7077 
2 USI) 

81.970 

of the boundary layer. It is observed that (Io/U,) = The two-dimensional drag is defined by 
,/U)¢., where V)/U, is termed the injection ratio. . j 

ie Sea eicames . : ; a= GS 
von Karman’s integral of Eq. (1) for zero pressure D= } pU,? ; dn (24 

sradient vis om 

1 peu U 7 . Using Eqs. (12) and (19), one obtains 
ad { r 

: | — : dy — _ = — (16) ‘ . > : 

dx ; at a “ MU; - " FUVo/ Or), mJ dm os 
D= pl 1 = nz - (25) 

; hee Jo er [l + (Vo/ Ui) ¢:7) 
may be transformed by means of Eqs. (12) and (15) to 
the form With the definition 

; , we 2D /' ar 9G » dm d ieee ¢ | 1 " ( F I pl 1° v) (20) 

é z ta) l a dn —_ - = = 14 ) . n = 2 

U, dx d , ¢) U; ¢1" and Eq. (22), Eq. (25) may be written 1 MmL/JIO | | J 

- Ps ° » ° ° e ) — je [ 4 ( i aw! 4 y! Q7 

since Eq. (15) is of the functional form Ce = 2bl(Vo/ Ov, mip / pe Pl 0/ 0), m)y (27) 

a , , y Ww > > 

= glen m (Vo/U)] = elm (Vo/U)] (8 _— 
ind the integral is thereby dependent upon the variable 

m alone. After differentiation under the integral sign 

and some rearrangement, Eq. (17) may be written 

Vo 
Y) 7 

Uy 

' | ‘ 
¥¢ an 

dn, 

(20 

dn a ( Vi ) 

U; i " dx Z 

¢ n) = } ‘ | (: — 2 “) ¢1- ~~ i 

J0 | ¢¥1 On 

\s is usual, the boundary layer is assumed turbulent 

irom the leading edge of the plate. Since the effect of 

injection on the initial growth of the boundary layer is 

+ (19 

slight, the initial condition on Eq. (19) will be taken as 

m(0O) = 0 (21) 

just as in the impermeable case. Thus, Eqs. (19) and 
7] 

<1) give 

Uw/v = R, = O([(V% 

+ ( 
[ 

U;), m] Ze 

where 

. | n) [" Fi Vo U, ly m| dn (2: 

l e/ ( » |L + (VM U1) ¢17] 

t )
 mm FU U1), m] dm (2) = } | roe: Oe 

l ] J0 ¥1 1 a (Vp l 1 o"} 

7) and (22) give the average skin-friction co- Eqs. (27) 

efficient as a function of the Reynolds Number in terms 

of the parameter n;. Thus, the problem formulates to 

the evaluation of the three integrals given by Eqs. (20), 

(23), and where ¢[m, 7, (Vo/U4)] ¢ilm, 

V)/U,)] follow from Eq. (15). This development is 

parallel to that of the impermeable plate drag law of 

Prandtl. 

Quadrature awaits specification of the unknown fune 

(28), and 

tions B, C, and g, whose arguments are the product 

10/01) ¢1. 

as constants conforming with impermeable measure 

These three parameters will now be taken 

ments made in conjunction with the universal log law.® 

Thus, let 

B = 2.493 l/g 

C = 8.93 99) 

g = 0.401 

It will be shown below that the limited experimental 

data available at the present time do not suggest greater 

refinement 

Substituting Eq. (15) into Eq. (20) and integrating, 

one obtains for B, C, and g constant 
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F[(Vo/ Uy), m|] = (B?/C)(d¢, dm)|(1 + Cm) X 

In? (1 + Cm) — 2(1 + Cy) In (1 + Cy) + 2Cm] + 

(Vo/ U1) (¢1?/427) (dei/dm) [A + m) In? (1 +m) — 

2(1 + m) In (1 + m) + 2m] — (Vo/ Ui)? X 

(¢1/4g?)?(d¢,/dy;) [A + m) Int (1 + m) — 

4(1 + m) In? (1 + m) + 1201 + m) X 

In? (1 + m) — 24(1 + m) In (1 + m) + 24m] (30) 

where d¢,/dn, follows directly from Eq. (15). 

The integrals of Eqs. (23) and (28) may now be 

evaluated numerically for selected values of the injec- 

tion ratio by means of Simpson's rule if Eqs. (29) are 

used. In Table 1, an abridged tabulation of the func- 

tions F, &, and y versus m is given for injection ratios of 

0.005 and 0.010. It is found from Eq. (22) that R, in- 

creases monatonically with 7, to become infinite at a 

value of m, which is finite for nonvanishing injection 

ratios. From Eq. (15) this value of m is found to 

correspond to infinite ¢,, or zero local skin friction, a 

result physically compatible with the corresponding in- 

finite Reynolds Number. The finiteness of this limit 

value of 7; is illustrative of the asymptotic behavior of 

the product 6U,. The limit values of m for injection 

ratios of 0.005 and 0.010 are given in Table 1. 

The average skin-friction coefficient is computed from 

Eq. (27). The variation of Reynolds Number based on 

momentum thickness with Reynolds Number based on 

the streamwise coordinate follows immediately from 

Eq. (16) in its integrated form. 

Cr = 2|(R,/Rz) — (Vo/U;)] (31) 

Figs. | and 2 present the variation of Ry with R, and of 

Cy with R,, respectively, for injection ratios of 0, 0.005, 

and 0.010. It is seen from Fig. 2 that the indicated re- 

duction of skin friction, and hence of heat transfer, 

under the action of injection is large. 

In addition, velocity profiles in the physical plane 

have been computed and shown in Fig. 3 for the above 

injection ratios, a nominal free-stream velocity of 26 it. 

per sec. and a nominal Reynolds Number based on 

streamwise coordinate of 600,000. 

COMPARISON WITH EXPERIMENT 

Shown in Figs. | and 2 are data for the corresponding 

injection ratios collected by Mickley, et al.’ The data 

of Fig. | follow directly from the measurement of the 

momentum thickness at various streamwise stations 

under particular stream and injection conditions. The 

average skin-friction coefficient for each Reynolds Num- 

ber is then computed from Eq. (31). All data shown 

were collected at a nominal velocity of 26 ft. per sec. 

Because of environmental anomalies at the leading 

edge, there exists in these data, as in most turbulent 

boundary-layer raw data, an uncertainty in the location 

of the effective origin of the streamwise coordinate for 

each run. The data may be adjusted for this effect jp 

the usual manner by shifting all the points indicating 

the variation of Ry with R, for a given injection ratio to 

the right by some constant amount which results in the 

best agreement with the theory. The effect of this shift 

is shown in Fig. 1. It is seen that the shifts are smal} 

amounting to increments in Reynolds Number of zero 

for no injection, to 25,000 for an injection ratio of 0.005, 

and to 10,000 for an injection ratio of 0.010. The 

variation of skin-friction coefficient with Reynolds 

Number may be recomputed from Eq. (31) and is showy 

in Fig. 2. The adjustment in Cy due to a small length 

correction is appreciable and brings the data in reason 

able agreement with the present analysis. In particu 

lar, the reduction in skin friction achieved by an injec 

tion ratio of one-half per cent is well given. 

By comparing the orders of magnitude of the average 

skin-friction coefficient and the injection ratio from Fig. 

2, it can be observed from Eq. (31) that the skin frie. 

tion for injection ratios of order 0.01 is given by the 

small difference of two measured quantities. Conse. 

quently, the precision of the measured values in Fig. 2 

in this range is significantly reduced; indeed, the value 

at the highest Reynolds Number may be virtually 

meaningless. The numerical counterpart in the theory 

lies in the behavior of the functions /, ®, and yj in the 

neighborhood of the limit value of 7. 

For purposes of comparison, theoretical velocity pr 

files are compared in Fig. 3 with corresponding meas 

urements (uncorrected for length) collected at the san 

station under different injection ratios. The nomin 

velocity is 26 ft. per sec. and the nominal Reynolds 

Number is 600,000; the precise conditions are noted 

on the figure. It is seen that the thickening effect 1s 

well-predicted by the theory but that the general shapt 

is not. However, the discrepancy in shape betwee! 

theory and experiment is qualitatively independent 0! 

injection ratio. The theoretical profile for no injec 

tion is the universal log law, which has been amply 

verified near the wall at higher Reynolds Numbers 

Hence it might be inferred that the observed discre] 

ancy is in reasonable measure an effect of the low test 

Reynolds Numbers. In common with all boundar) 

layer integral methods, the precision of the distributio! 

of velocity is characteristically inferior to the predicted 

average effects. 

29) for 

bl 

Thus the simple assumptions made in Eq. | 

the function B, C, and g appear to result in reasona 

agreement with the limited drag data available. Moré 

accurate and complete measurements are required t 

fully establish the validity of the relationships derive’ 

and, further, to determine if or how the assumptions 
e . ‘ . ° 1;. 

made for the aforementioned functions are to be moa! 
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fied. In this sense, the analysis is considered pro- 

visional.* 

CONCLUDING REMARKS 

The Prandtl analysis of the incompressible turbulent 

boundary layer has been extended to include the effect 

of mass transfer. 

* After this analysis was first submitted for publication, a paper 

by W. H. Dorrance and F. J. Dore entitled The Effec’ of Mass 

Transfer on the Compressible Turbulent Boundary-Layer Skin 

Friction and Heat Transfer appeared in the Journal of Aeronauti 

cal Sciences, Vol. 21, No. 6, pp. 404-410, June 1954. The ve- 

locity profile expressed here by Eq. (14) is derived in that report 

in a similar way excepting that a wall boundary condition which 

yields a relation between the parameters A and B is imposed 

The remainder of the two analyses are, however, quite dissimilar 

It is of interest to compare the results of each analysis with each 

other and with the measurements of reference 7. The present 

writers have compared the variation at low speeds of local skin- 

friction coefficient with Reynolds Number in the range of the 

measurements for an injection ratio of 0005. The agreement of 

local skin friction predicted by the present method with both the 

shifted and unshifted data of reference 7 was found good—the 

local skin-friction results being relatively insensitive to the 

present length correction. The values of the coefficients pre 

dicted by Dorrance and Dore at this injection ratio are about one- 

half the above values at corresponding Reynolds Numbers. The 

agreement cited by Dorrance and Dore of their results with 

reference 7 is asserted on the basis of a different mode of repre- 

sentation of these results, wherein the measured coefficients are 

normalized to the corresponding measured impermeable co- 

efficients. The discrepancy between their results and the present 

results may be due to the interchange of average and local co- 

efficients at one stage of their analysis, an assumption which 

would appear to restrict subsequent results to small injection 

ratios 

AERONAUTICAL SCIENCES -APRIL, 19585 

The variation of average skin-friction coeflicient with 

Reynolds Number for various injection ratios predicted 

by this extension is in satisfactory agreement with th 
The Reynolds Number 

range covered in this comparison is about 10° to 10°, 

measurements of reference 7. 

The calculated results involve no empirical constants 

determined from permeable wall measurements. Ther 

fore, until a comparison with more accurate and 

sive measurements is possible, the present results must 

be regarded as provisional. The Reynolds analogy, 

confirmed by the Mickley measurements of permeabk 

velocity and temperature profiles, can be used to deduce 
the effect of injection on Nusselt Number variation 

from the theoretical skin-friction coefficient relations, 

The velocity profile and the parametric relations for 

average skin-friction coefficient in terms of Reynolds 

Number automatically revert to those of Prandtl when 

the iniection ratio is set equal to zero. The minor ad- 

justment made in the final interpolation formula of 

Schlichting® does not, however, follow. 

The relations developed presumably apply also to 

the case of suction, but no comparison with measure- 

ments has been made. 
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On Supersonic Flow Past a Finite Wedge 
5 at the Crocco Mach Number 1 the 

nber 

10°, + rr * r . . , ’ ve KO TAMADA* anv YOSHIO SHIBAOKAt 
lere Kyoto Unwersity and Osaka City Unwersity, Japan 

nust 

logy, SUMMARY the velocity vector and its angle of inclination to the 

ible In the present paper the supersonic flow past a finite wedge at direction of the uniform flow, respectively. If one 

duce the Crocco Mach Number is investigated by the hodograph writes 

‘ion method. An explicit expression for the stream function is ob 

ms. tained, assuming that the nose angle of the wedge is so small q= 1+ [2m/(y + I]é 

. that the transonic approximation is applicable. Then, the drag a 

5 lor coefficient C, of the wedge is calculated, the result being @ = (4N ») |m YT lh 
olds 7 TE | 

: 29 B70 | mw = f - _—" = 2 
yhen Cp = 2.679 (y + 1 a , aaa 

ad- . ke (uv-1 — 1.6483 where ¥ is the adiabatic exponent, one may assume that 
/ 

m is small and £ and 7 are finite in the transonic field i of 

where y, a, and .V/ are, respectively, the adiabatic exponent, the under consideration. Then the fundamental field equa 
seminose angl f the wedge, and the Mach Number of the un ‘ » : ; re 

t pra t -asillaaae ng lan pti claremont tion for the stream function W reduces to the Tricomi 
) WO disturbed flow The velocity distribution along the side of the , 

ure- wedge is also calculated equation 

vies — (9/4) EY,, = 0 2 
|) INTRODUCTION 

Further, it can be shown that the equation for the 
em CONTINUOUS TRANSITION from attached to de- shock polar becomes 

y of tached shocks in supersonic flow past a finite wedge 

ral was first discussed by Guderley.! Ina previous paper, 7 = +(3/2V 2) (1 — &) (1 + &) ° 
iber on . . 

Tamada gave an approximate analysis of the process or 
fi Ss Se PI . : I é and the condition on the shock wave is represented by 

of transition. There the whole analysis was carried . 
ture ; eee the equation 
al out in the physical plane, and an expression for the flow 

aa field near the nose A (Fig. 1) was obtained on the basis ¥: — S(é)y 0 | 
sige : : (4 

of a linearized field equation. Also, using the expres- S(t) = (3/9V2) (1 , sre s¢)]\ 
; Py ; S(é) = (3/2V 2) + &) * ((1 + 7&)/(3 + 5&) 

sail sion so obtained, the drag coefficient of the wedge was 

ul of calculated. It is somewhat questionable whether the along the shock polar | Eq. (3) 
ber, linearized expression is valid over the entire wedge. Now, let (£4, na) be the coordinates of the nose A 

It is probable that the flow near the shoulder B (Fig. 1 of the wedge in the (£, 7)-plane (Fig. 2), and let y 0 

face may require a different representation. along the wall AB (yn = const. = 94). Then, Eqs. (35), 

il of Now, the flow past a wedge, in general, can be +), and (1) show that the condition (4) is compatible 

treated conveniently in the hodograph plane, since without singularity at A) with the condition ¥ 0 

aes the boundaries consist of straight lines only. Espe- along AB when and only when 

cially, when the Mach Number of the oncoming flow 
Day . & : — . 
we takes a particular value (the Crocco Mach Number), 

the flow is regular at the nose A and the analysis can 

bas be considerably simplified. Therefore, in the present 
tate ten - z 

paper, the flow in the Crocco state will be analyzed by 

the hodograph method, making the assumption that 

the seminose angle of the wedge is so small that the 

transonic approximation is admissible. 

2) FORMULATION OF THE PROBLEM 

In the following, the ‘‘critical speed” (which is in- 

variant in passing through the shock wave) is taken as 

the unit of velocity. Let 1/ be the Mach Number of 

the uniform flow, and let g and @ be the magnitude of 
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Fic. 2. Hodograph plane. 
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ta = —(1/7) 0a = (12/7) V3/7 |] 
2 : 

(5 

A= (y¥t 1% am = (8/7)3” = 1.6483) 

where a is the seminose angle and X is the transonic 

parameter. This is the Crocco state and will be ex- 

clusively discussed below. Further, y = 0 along the 

characteristic BB’ (n4 — 7 = &’*) in the (é, n)-plane, 

since there occurs a Prandtl-Meyer expansion at the 

shoulder B of the wedge. Thus, the problem reduces 
to finding the solution y(é, 7) of Eq. (4) which vanishes 
along ABB’ and satisfies the condition [Eq. (3)] on the 
shock polar AS in the (é, 7)-plane. 

(3) THe STREAM FUNCTION 

First, it is noticed that Eq. (2) has a general solution 
of the form 

= ( — f-) am a | v) dt + 
r(1/2)r(1/6) J -: P 
r'(4/3) ' i al 

r(1/2)r(5 6) © (1 — ?#) G(E**t + 8) dt (6) 
é ’ —1 

where 

o=m-7 ‘ 

It may be observed here that 

F(d) = (0, 3) 

G(d) = ¥,(0, d) 

From the boundary condition that y = 0 along the 

characteristic BB’(é = #8”), there arises an integral 

equation of Abel's type which connects the arbitrary 

functions F(3) and G(v). The solution of this equation 

is written as 

| (1/6) ; 
: v (1 — 7) xX 

3 ©tl/2Z)T (32/3) J0 

G(dr) dr (8 

F(id) = - 

(For details of the deduction, reference may be made 

to Tricomi’s well-known memoir.*) 

Further, the condition yy = 0 along AB (8 = 0, 

~ < Q) requires the following homogeneous integral 

equation to hold. 

(5/6) ite 
— (1 — FP) ale 2) OX 

PL /2P/3) J =1 

tr dt } (1 —. 7) G(i'é tr) dr + 
0 

It can be shown that this equation possesses character- 

istic solutions of the form 

G(v) = 0 ial ie.= @ 2.2. ..:. 10 

From Eqs. (10), (8), and (6) one obtains a system ( 

of characteristic solutions y,,(&, 3) of Eq. (2). 
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SUPERSONIC FLOW 

y=; ‘ge + me ¥ 
2)T1(7/3) + 2n 

ee 4 ] 4 ¢ 
Ee + 2n 5 ( 7 = - a =, ) 

6 >) oO tw 

1_1)\"4 2 P(1/3)P[(4/3) + 2) y 

V3 T(1/2)r[(7/6) + 2] 

a ¢ 
few (11) 

ila as I l 
“OFl—-—n,- —4n; 

6 6 
Ser 

a] 

Thus, a general form of y that vanishes along ABB 

can be written as 

v= > Avs (12 
n=O 

where A,,'s are arbitrary constants. 

Finally, the shock condition [Eq. (4)] along AS de- 

termines the constants A,'s. The writers have actu- 

ally used the first four terms in series (12) so that the 

value y;/y, and its slope agrees with the curve S(é) at 

two of the points A (£ = —1/7) and S(é = 0). The 

results are 

Ay = 1 

A, = —0.1S7760 

A, = 0.15801 8 
(13 

A 0.029858, 6 

12 [3 a ee 
Se =e Fe = |] ae =~ 0.061603 

‘ ( 2 2 

After determining these constants, the degree of ap- 

proximation for the condition [Eq. (4)] is examined. 

The result is shown in Fig. 3. 

(4) DRAG COEFFICIENT 

The pressure coefficient C, is defined, as usual, in the 

form 

Cy, = (2/yM?) [(p/pu) — 1] (14) 

Where p, and p are, respectively, the pressures in the 

uniform flow and the flow behind the shock wave. In 

the transonic approximation, C, is related to the re 
j 

duced velocity £ as 

C, = [4/(y¥ + 1)|JmQi — &€ (15) 

Hence, the drag coefficient Cy of the wedge is given by 

am X 
l 

J a-sas fas 

is the length of the side AB and s is the dis- 

(16) 

where 
tance along AB from the nose A in the physical plane. 

Now, since g do/ds, @ being the velocity poten- 

tial, and @ —(3/V 2)m “tf, in the transonic ap- 
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proximation, it follows that along AB (8 = 0 

ds = —(3/V 2)m “ty dt (17) 

Also, from Eqs. (12) and (11) 

Vy = > it. é ne 

n=0 

(1S) 

a, = (—}1)*T" 
V3 7T(1/2)T/(7/6) + n) 

along AB. 

(16), a formula for the drag coefficient can be ob 

Inserting Eqs. (17) and (18) into Eg. 

tained in the form 

QnA» 
l 

— { 
(= ‘ om _ ) (19) 
n=0 o+ 6n f 

In the four-term approximation mentioned above, the 

value of Cp is calculated to be 

Cp = 2.679 (20) 

It may be added here for comparison that in the 

transonic approximation the drag coefficient Cp 

of an infinite wedge (not of a finite wedge) is given 

[from Eqs. (1), (3), and (16)] as a function of the tran 

sonic parameter \ by the relations 

Coe. = 21 — 8) 

or 

A = SCp (16 so Cp 

1.6483 (& = and especially Cp... = 2.773 for \ = 

—1/7) corresponding to the Crocco state considered 

above. 

B 

>*Si 10 

Velocity distribution along the side of the wedge. 
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“ffect of Large Deflections and Initial 
Imperfections on the Buckling of Cylindrical 

Shells Subject to Hydrostatic Pressure 

WILLIAM A. NASH* 

l’niversity of Florida 

ABSTRACI 

Numerous treatments of the elastic buckling of thin cylinders 

under various loadings and with various boundary conditions 

In general, those analyses which involve 

shell 

loads than actually found during test 

exist in the literature. 

predict higher buckling 

In an effort to explain the 

classic:! small deflection theory 

discrepancy between these theoretical values and experiment, 

Donnell in 1934 introduced the concept of large deflections to 

gether with the consideration of initial deviations from perfect 

shape. This approach has been employed by Donnell and Wan 

to investigate the phenomena of buckling of cylinders subject to 

Both 

of these studies yielded results that are in substantial agreement 

axial compression and by Loo to study torsional buckling 

with experiment. In th’s paper the buckling of a cylinder sub 

jected to hydrostatic pressure is analyzed from the standpoint 

of large deflections together with initial imperfections because of 

the marked discrepancy b*tween small deformation theory and 

test for this type of loading. The relations derived are in line 

with test results 

INTRODUCTION 

oe PAPE"’S CONCERNING the buckling 

strength of cylindrical shells subject to various 

loadings have appeared in the literature. In general, 

the treatments may be separated into two broad cate- 

gories: (1) so-called classical analyses, based on the 

sinall deflection shell theory presented by Love! and the 

assumptions of linear elasticity and perfect initial shape; 

and (2) large deflection analyses, in some of which 

initial treated. The 

classical analyses, in general, predict much higher 

buckling loads than those found during test. For 

the case of buckling under axial compression, for ex 

imperfections are specifically 

ample, experiments give only an average of from two- 

tenths of the classical value for extremely thin cylinders 

to five- or six-tenths for rather thick ones. For the 

case of torsional buckling, the average experimental 

result is about 75 per cent of the classical small deflec- 

tion value. Several attempts® * were made to explain 

such discrepancies but the most promising one was 

the rather general theory presented by Donnell‘ in 1934 

in which considerations of both nonlinear termis due to 

large deflections and the concept of initial deviations 

from perfect shape were introduced. 

In 1939 von Karman and Tsien® presented a new con- 

ception of the buckling process for thin sheets. Their 

Received March 29, 1954. 
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analysis of a spherical shell subject to uniform normal 

pressure, which extended Marguerre’s treatment of the 

‘“durchschlag”’ of a curved bar loaded by a concen- 

trated force,® indicated the existence of configurations 

not far from the spherical form which involve a lower 

level of potential energy. They advanced the hypoth- 

esis that the shell would “jump” over into one of thes¢ 

configurations. For the sphere, they calculated such 

a “lower” buckling load, which is equal to the minimum 

load necessary to keep the shell in a buckled state with 

finite deformations and which is independent of the 

1941 these same 
] authors applied nonlinear large deflection theory and 

initial imperfections of the shell. In 

the concept of a “‘durchschlag”’ 

study of the postbuckling behavior of a thin cylinder 

Equilibrium positions with 

phenomenon to the 

under axial compression.’ 

a buckled shape involving a lower load than given by 

classical theory were found, again without any specific 

The initial 

maximum resistance of the cylinder was still found to be 

consideration of initial imperfections. 

that indicated by classical theory, but no complete 

explanation was offered for this fact. Extensions of 

this work have been presented by Leggett and Jones,’ 

Michielsen,? Kempner,’ and Yoshimura.'! Several 

other investigators have also considered the discrepan- 

cies between theory and experiment.!°~" 

In 1950 Donnell and Wan" considered the problem 

of axial compression of a cylinder and utilized the 

fundamental finite deflection equations for shells de- 

veloped by Donnell in 1934 together with a consider- 

The 

solution obtained was in reasonable agreement with 

experimental evidence. In 1952 extended this 

analysis to the case of torsional buckling of thin cylin- 

ation of the initial imperfections of the specimen. 

Loo” 

drical shells (again using finite-deflection theory to- 

gether with a consideration of initial imperfections) and 

found for this loading that the specimen was less sensi- 

tive to initial imperfections than in the case of axial 

compression. The fact that his results are in substat- 

tial agreement with experiment lends further support 

to the validity of this approach. Each of these treat- 

ments is in excellent agreement with classical buckling 

theory for the special case of small deflections of per- 

fect specimens. 

The problem of the elastic buckling of cylindrical 

shells subject to hydrostatic pressure has been con- 

sidered by several authors”’~*! for a variety of boundary 

condi 

tion t 

this p 

pressi 

betwe 

ex] yer 

lengtl 

order 

tion. 

of the 

5 

comp: 

at tha 

Funda 

Let 

i an 

coordi 

tions, 

inWart 

‘ a 

middl: 

stress 

brane 

treate 

mediu 

The h 

sonab] 

Stresse 

placen 

becom 

the cu: 



al 

ormal 

f the 

ncen- 

itions 

lower 

poth- 

these 

such 

mum 

with 

| the 

Same 

and 

) the 

inder 

with 

n by 

cific 

utial 

to be 

plete 

is of 

nes,” 

eral 

pan- 

ylem 

the 

de- 

der- 

The 

vith 

this 

rlin- 
to- 

and 

nsi- 

xial 

fan- 

ort 

pat- 

ling 

er- 

ical 

on- 

ary 

BUCE LING OF CYLINDRICAL SHELLS 265 

conditions. To date, only the classical small deforma- 

tion tvpe of analysis has been employed in analyzing 

this phenomenon. Again, as in the cases of axial com- 

pression and torsion, there is a considerable disparity 

between the results obtained by classical theory and 

experimentally obtained buckling loads.*» * 

In view of the success attained by Donnell and Wan, 

and later by Loo, in explaining the discrepancies be 
tween classical buckling theories and experiment, the 

same fundamental approach—i.e., the use of finite- 

deflection equations together with a consideration of 

the initial imperfections of the shell—is employed in 
this paper to study the phenomenon of buckling of 

evlindrical shells subject to hydrostatic pressure. The 

following general assumptions are made: 

1) The material follows Hooke’s law. 

2) The displacements are small compared to the 

length or diameter of the cylinder but may be of the 

order of magnitude of the thickness. 

3) There are no normal stresses in the radial direc- 

tion. 

!) Lines originally normal to the median surface 

of the shell remain so after loading. 

5) The thickness of the shell at any point is small 

compared to either of the principal radii of curvature 

at that point. 

ANALYSIS 

Fundamental Equations 

Let us consider a cylinder of mean radius R, length 

L, and thickness /. Let x, s, and s denote orthogonal 

coordinates in the axial, tangential, and radial direc- 

tions, respectively. Further, let u, v7, and w (positive 

inward) be the components of displacement (in the 

and < directions, respectively) of any point in the 

middle surface of the shell. In the thin cylinder the 

stress field may be considered to be composed of mem- 

brane and bending action and each system will be 

treated independently. For a homogeneous, isotropic 

medium, the strain-displacement relations, in general, 
are given by 

Ou l Ou\- | Ov \* | Ow 
+ + + 

Ox 2 t\Ox Ox Orv 

ov Ou ov \* 4 ow \? 

2 Os ~ \ds Os : 

( Ou Ov 

Os Ox . 

Ou Ou | Ov Ov Ow Ow 
1 dvds " dvds | dx Os 

The higher order terms in u and v in Eq. (1) may rea- 

sonably be neglected in computing the membrane 
Stresses and strains in a thin cylinder, since these dis- 

placements are small compared to w. Eqs. (1) then 
become, after adding the term —w/R to account for 
the curvature, 4 

ou AK fox 
. = s 

Ox 2 Ox 

Ov K ru Ty 
€ = a i _ (2) 

Os Z Os R 

Ou Ov . OW OW 
€rs = + + K 

Os Ox Ox OS 

where A = 1 + (2a /w) = 1 + (2ao/a 1+ (V/a) = 

constant, w representing the initial radial deviation 

from perfect shape, ao the amplitude of wo, and ah 

the amplitude of w. The fact that A is taken to be 

constant implies that only the component of the initial 

deviation, which is of the same shape as the displace 

ments, can be taken into account. This is the same as 

is often assumed in column theory and is equivalent to 

assumptions made by both Donnell and Wan and also 

Loo. This component of the deviation is by far the 

most important one. By assuming that the equations 

of equilibrium for an element in the plane of the cylinder 

wall are approximately the same as those in flat plate 

theory and by introduction of the Airy stress function, 

Donnell’ obtained the following basic relation between 

the stress function / of the membrane stresses and the 

radial displacement w. 

O° a | (ow 
= F = EK - 

Ox: Os- ONxOs 

O'w Ow | E 0% 

Ox? Os? | R Ox 

where £ is the modulus of elasticity The second 

order terms on the right side of Eq. (3) correspond to 

membrane stresses due to the finite displacements, 

while the last term corresponds to membrane stresses 

due to the curvature. If wis known or assumed, then 

F may be readily found from Eq. (3 The stress func 

tion will, of course, be the sum of a particular solution 

of Eq. (3) and the general solution of the corresponding 

homogeneous equation. The latter solution, to be 

consistent with the physical conditions of the problem, 

is merely 

Knowing /, the membrane energy of the cylinder may 

be expressed in terms of the stress function as follows. * 

h [ [ Ry(OF  owF\ 

En 9E JO « ( Ox bai Os? 

[ O°F \? OF OF]. . . 
2(1 + »v) ~ | adv ds a 

L \Oxds Or? Os? JI 

where v denotes Poisson's ratio. The strain energy of 

bending is given by the expression* 

Eh’ [ [ R (ow O°w 
fk, = + =e 

24(1 — p-) J0 Ox Os? 

911 [ / O*w \? Ow Owl, , . 

: Ox ds Ox? Os? |f 
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The total strain energy is consequently given as the 

sum of /,, and £4. 

Knowing the elastic strain energy stored in the shell, 

it is next necessary to calculate the work done by the 

external forces acting on the shell. This work done may 

be calculated as the hydrostatic pressure p multiplied 

by the decrease of volume of the cylinder. The change 

of volume is given, approximately, by the relation** 

eo e27rR Kw? 

eLrR? + { i} — OR | dx ds (7) 

where ¢ denotes the mean unit axial compression of 

This mean compression is given by the 

AV = 

the cylinder. 

nonperiodic terms occurring on the right side of the 

expression 

Ou/Ox = (K/2) (Ow/Ox)? (8) (1/F) (0, — vas) 

which is readily obtained from the stress-displacement 

relationships.’ It is assumed that the pressure acting 

on the shell at the start of buckling is practically the 

same as that at the end point of buckling. 

Consequently, the total potential l’, is given by the 

sum of the strain energies and the potential of the ex- 

ternal loads. JU’, contains a term involving the mean 

axial and circumferential stresses from Eq. (4), but 

this term has no effect upon the problem because it 

represents work done during the ordinary elastic com- 

pression of the shell under load. It is to be noted that 

the total potential reduces to that obtained by Loo’® for 

the special case of axial compressive forces only and 

with the wave lengths in the axial and circumferential 

directions assumed to be equal. 

Displacement Pattern 

Let us assume a deflection shape of the form 

¢ 
a = ah{sin (ms/R) sin 6x + d(1 — cos 26x)] (9) 

where a, d, m, and n are arbitrary parameters and 

6 = nx L. The first term corresponds to a simple- 

support type of reaction at the ends of the shell and 

was the only term used by von Mises™ in his small 

deflection analysis of the buckling of such a cylindrical 

shell. The second term, which represents an axially 

symmetric deformation, becomes important in the case 

of large displacements, where it reduces the circumfer- 
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ential stresses by balancing large deflection strains 

against strains due to change of radius. Even though 

this term does introduce some longitudinal bending, 

the total internal strain energy is considerably re 

duced. It was found by trial that addition of a con. 

stant term inside the bracket (corresponding to a unj 

form inward displacement) has a negligible effect on the 

final results. Also, for the particular displacement 

pattern assumed, it was found that the requirement 

that the circumferential displacement be a_ period 

function of the circumferential coordinate led to the 

same equations derived below. This condition must, 

of course, be enforced, and it is probable that other 

displacement patterns would reflect its influence more 

than does the one selected here. For this assumed 

configuration, the Airy function is found from Eq. (3 

to be 

Ot" + Cos” + €3 COS (2ms R) + 

Cs cos 26x + c; sin (ms/R) sin 36x + 

F= 

c, sin (ms/R) sin 6x (10) 

where 

cz = [(EK6?R?) /(32m?) jazh? 

= | [(EKm?) /(3262R?) Ja2h?} — C4 

{ |(Ed) /(462R)] ah} 

2EK6?m"d a 
Ct = a*h? 

[962 + (m?/R?) }?R? (11 

2EK6?m?d 
co = a*h? + 

6° + (m?/R?*) |?R? 

6? 

[62 + (m?/R?*)]?R 
ah 

and ¢, and ¢ are proportional to the mean circumfer 

ential and axial stresses, respectively. Knowing « 

and F, the total potential l’, is readily determined. 

Minimization of Potential 

The variation of the total potential with respect to 

each of the arbitrary parameters must vanish for 

equilibrium. If the differentiations indicated by 

Ol’,/da = 0 OU ,/dd = 0 (12 

are carried out, they lead to the simultaneous equations 

2ad? 

1 

Ehia l m°\* : Eeh*® 46h? aioe ss 
; 6° + — + 1664d? | + : (4a* + GVa> + 217%a) + + 

1241 — v2) L2 R? 2 (64 

mh? la + 6Va? + 212 mdh 42a) + 264m 4d*h? ta? + 6Va? + 2V%) + 
(4a‘ he 2V"a) — (3a- Z2Va (4a” yva- 2V“a) 

64R: \ als 1Re © © 1952 4 (m?/R2) |2R! 
26'm4d*h? aé' 264m*dh ‘ al 

(3a? + 2Va) = 5 ananaan OF + OF + 217%) + 

[ mh? (Qa + 
2 V) - 

i +R sii ld 2R 

[52 + (m2/R2)PR? [52 + (m? 
V)h? f 1 é R85*h? ; pee j 12 

— +» 3 + = (Qa + V) + R&d*n(2a + V) | =0 (be 

R?) |2R' 
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Eh'a* a Eh*® {2a*d m? ( ') 
3264d : _— 1 3] 

94(1 — v*) nT Z ] R? 4R3 + a ial 

46'm‘d (: 4 “= _ 46¢mid (: 42V4 4 - 
[96? + (m?/R?) ]?R* a a° seed [6 + (m?/R?*) |?R4 a a? via 

264m? V { 3 x: ID 
[62 + (m?/R?) ]?R? (1 + a ) , “| f 

The potential U’, could be minimized with respect to 

the parameter m, but it was deemed easier to do this 

on a numerical basis, starting with the number of cir- 

cumferential waves predicted by classical theory and 

varying this number until the minimum pressure was 

found for any configuration. For the case of hydro- 

static pressure, m = |. 
For assigned values of a and J’, Eqs. (13) and (14) 

may be solved for d and p/p for any shell geometry, 

various values of m being investigated until a minimum 

value of p is found for each pair a, V. It is of interest 

to note that if d is set equal to zero in Eq. (9), which 

reduces the assumed value of w to that treated by von 

Mises,”’ and if further V is taken to be zero, which 

corresponds to the case of an initially perfect cylinder, 

then minimization of the total potential LU’, with respect 

to the single remaining parameter a yields for p the 

j Eh’ (5 4 ) 

(48(1 — v?) R? 

Ehé6' ) (= RS ) ; 
. aa _ (15) 

1[52 + (m?/R?)]?R24/ \4R S 1R 

This is equivalent to the classical small deformation re- 

value 

sult von Mises obtained using differential equations of 

equilibrium of a shell element. It was later derived 

by Salerno and Levine*' as a special case of their 

analysis of a cylinder reinforced by circumferential rings. 

Proposal of Formula for Imperfection Factor 

Initial imperfections in the shell may include: (1) 

initial deviations from the assumed perfect geometrical 

shape, (2) initial stresses, (3) deviations from uniform, 

isotropic elastic behavior, and (4) accidental lateral 

loadings. The first three are all properties of the speci- 

men and some “‘equivalent geometric deviation’’ would 

have the effect as all This 

equivalent deviation may, of course, be characterized 
same three together. 

by the parameter A appearing in Eqs. (2). 

Donnell and Wan" and late 

concept of an ‘‘unevenness”’ factor Uy), which for a thin 

Loo'® employed the 

cylinder is assumed to be related to aoh (the amplitude 
of W in the following manner. 

a Uo} [(L,L,)/(Lr + L,)] (1/h)}" = V/2 

where L, and L, are the half-wave lengths in the axial 

and circumferential directions, respectively. Let us 
adopt the value of 6 2, which is consistent with 

3a°h*d V = V vor 
1 + + 2R6*d {1 + a*h?| =0 (14) 

R a a 

recommendations" for strength of columns. On the 

basis of numerical calculations carried out with Eqs. 

(13) and (14) for several unreinforced cylinders tested 

by Windenburg and Trilling® (where buckling pressures 

are available in the literature), it is suggested that a 

value of Uy = 3 (10)~* will probably provide a reason- 

able guide for estimating the buckling strength of cylin- 

ders subject to hydrostatic pressure. This value of 

U> is somewhat higher than those previously recom- 

mended for axial compression and torsion loadings." '* 

The number of circumferential waves (and hence L,) 

is predicted with sufficient accuracy by small-deflection 

theory. 

Such a suggested value of Uy is obviously approximate 

and awaits refinement from further experimental evi- 

dence. Also, it is undoubtedly possible to have a 

larger value of ly) at one part of the cylinder than at 

other parts, since buckling usually occurs over only a 

part of the shell.” * In deflection con- 

figurations other than that indicated by Eq. (9) should 

addition, 

be investigated. 

Numerical Example 

Let us consider a cylindrical shell having the following 

characteristics.” 

L = 8 in. 

R = 8 in. 

h = 0.0901 in. 

E = 29 X 108 lbs. per sq.in. 

yp = 0.5 

(Data from this shell were not used in determining the 

U.) 

values of a and I’, Eqs. (13) and (14) 

for d and p and these values plotted as in Fig. | 

afore-mentioned value of For various assigned 

may be solved 
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Throughout these computations it was found that a 

configuration corresponding to eight circumferential 

waves led to the minimum pressure. From these curves 

and with the previously suggested value of Lo, the peak 

pressure such a shell could carry is approximately 290 

Ibs. per sq.in. Experimentally, Windenburg and 

Trilling” found that the first lobe formed in it at 2S1 

Ibs. per sq.in. Such close agreement may not, of 

course, exist with other geometries. Classical small 

deformation theory, assuming simply supported ends, 

indicates a buckling pressure of 386 Ibs. per sq.in. for 

this shell. 

Concluding Remarks 

The problem of buckling of a thin cylindrical shell 

subject to hydrostatic pressure has been considered 

from the standpoint of large deflections together with 

initial deviations from perfect shape. An approximate 

value of an ‘‘unevenness”’ factor, expressed as a function 

of the geometry of the shell, is suggested which is only 

slightly greater than existing recommendations for 

cylinders subject to axial compression or torsion. 

Certainly deflection configurations other than that 

indicated by Eq. (9) should also be investigated. It is 

evident that this approach does not allow a rigorous 

consideration of boundary conditions at the ends of the 

shell, because those boundary conditions having to do 

with axial and circumferential displacements cannot 

be treated directly. Consequently, considerable ex- 

perimental data should be gathered to determine the 

minimum length-diameter ratio for which this treat- 

ment could be expected to yield reasonable results. 

(For the case of axial compression the minimum value 

of this ratio is approximately 3/4.) Also, since the 

“large deflection’ theory used here is only a second 

approximation, its validity for deflections of the order 

of several times the thickness should be further investi 

gated. 

Thus it is evident that a considerable amount of ex 

perimental data should be collected and further re 

finements in theory considered to yield a completely 

satisfactory solution to the problem of hydrostatic 

buckling of a cylindrical shell. Nevertheless the pres 

ent theory should give a_ reasonable quantitative 

estimate of the buckling strength of such a shell. 
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® Slankard, R. C Nash, W. A., Zests cf the Elastic St 
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1.7035) Subjected To Hydrostatic Pressure Pavlor Model 

Jasin Report 822, 1958 
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David 

von Karman, Th., Dunn, L. G., and Tsien, H. S., 7h 

Influence of Curvature on the Buckling Characteristics of Structures 

Journal of the Aeronautical Sciences, Vol. 7, No. 7, pp. 276-289 
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On Supersonic Flow Past a Finite Wedge at the Crocco Mach Number 

(Continued from page 263 

Also, it is obvious that C, should coincide with Cp 

ith = 2° (&£ = O) when the field behind the shock 

becomes uniform and sonic, and, therefore, Cp = 

2 2.520 atA = 2 = 1.5874. A comparison of 

the above results with experiments is made in Fig. 4. 

In a previous paper,” the value of Cy for the Crocco 

20 

2679(y + 1 a 

state was calculated to be 0.276 for a wedge of a = 

while the above formula Cp = 

gives the value 0.346. Agreement of the two values 

isnot so good. Possibly this is due partly to the in- 

accuracy of the velocity distribution in the previous 

calculation and partly to the extrapolation of the pres- 

ent (transonic) theory to the case of such a_ thick 

wedge. 

(9) VeELocITy DISTRIBUTION 

Finally, integration of Eq. (17) gives 

w a,A, 2, 
~~ on vé .% - t any 

09 + On 

1 
j Ae en 
) eae at Bieat 21) 

(roo + 6n 

From this equation it is possible to calculate the ve- 

locity distribution along the side AB of the wedge, and 

the four-term approximation is shown in Fig. 5. It 

will be seen that the curve is smooth at the nose A (char- 

acteristic to the Crocco state) but has vertical tangent 

at the shoulder B. This rapid expansion, being com 

mon in a subsonic field adjacent to a Prandtl-Meyer 

expansion, was ignored in the previous paper men 

tioned above. In this respect the previous calculation 

is unsatisfactory. 

In conclusion, the writers wish to express their 

thanks to Professor S. Tomotika for his continual in- 

terest and encouragement throughout this work. The 

writers’ thanks are also due to Dr. G. Guderley for his 

valuable criticism of the previous work of one of the 

writers. 
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The Second-Order Thin Airfoil Theory for (0 = —f{y*(@) + is(@) — iae 
Compressible Flow , 

ao 

= - sin 6 + ph’(0) + ivfe'(@) + asin 8! 

Isao Imai d0 

Department of Physics, Faculty of Science, University of Tokyo, dj do 
Tokyo, Japan P(0) + iQ(@) = | ( ») us 

October 20, 1954 do do 

Here fy is the complex conjugate of fo, and g* is the conjugate 

I A RECENT note in the Readers’ Forum, Van Dyke! presented Fourier series associated with g, so that, if 

a remarkable rule that expresses the second-order subsonic 

pressure distribution over any thin two-dimensional airfoil di- jet 3S Gm +i mw ‘ 

rectly in terms of the incompressible pressures. Thus if the in- ord 

compressible pressure coefficient is expanded in powers of the th 
. ‘s “ etl 

thickness parameter ¢ in the form 

Choo = th(x) + fe(x) 4 (1) g*(0) = >> a, sin n@ b, cos né 

n=1 

then at any subsonic Mach Number .\/ the pressure coefficient ae 
‘ : l oa 
is given by —— (0 + ¢) — 2(0)] cot — de 7 

). ») 

Com = Aytf(x) + Aot?e(x) 4 : (2) wii 

where Also, the circulation around the airfoil is given by 

3 l l (y + 1) 14 + 4p? T= 2n(u kip + k 

K, = = ; Ky, = (2a) ; ' ; : ; 
</ 1. — Ml bu By use of the above formulas, velocity distributions and lift 

and moment of the general Joukowski airfoils (including ellipti 
rhe purpose of the present note is to present the general formulas cylinders and circular are airfoils as special cases) were discussed 

that give the velocity and pressure distributions over any thin Recently, Asaka’ has extended the analysis to the third order 

airfoil directly in terms of its shape and treated symmetrical biconvex circular are airfoils at zero 
About 10 years ago the present writer? obtained a general ingle of attack. 

expression for the velocity distribution on the surface of any Inspired by the surprising clegance of Van Dyke's result 

arbitrary airfoil, based on the so-called “‘thin-wing-expansion the writer re-examined the above-mentioned formula (4 

method hus if the airfoil is represented by discovered that there exists a simple functional relation betweer 

- i ‘ 2 the two functions S(@) and 7(@ Thus, Eq. (4) can be put in 
x = cost, y = g@) (3 j , 

considerably simpler form, 

then its velocity distribution ¢ is given by ' ‘ | 
q a” : P ee . 

- = 1 — ) sina ag'(d) 4 A+(1+4+\)) 
q ee I id ' a l ' 2 re 

=] sind 4 {o*'(e a cost + Kol +S) 4 ee 
l mn d(A?— B) sind , . , wae 

> cin? @ »B? { psin? dv + v)|*5 s 
eal -—e ee 2 sin? d + p2B? 

T(v) + al |} sin? + [e/(d)]?! (4) 
9 
- - where 

where l’ is the undisturbed flow velocity, a is the angle of attack, A = g*"(¢ acost +x MV 

and > "AS a Hg a} B= g'(0 a sind D 

VJ? a 4 l lf? ) | , | : - a’ O*"(8 h , 
uM = l V/ \ = é (: ; ) (2 . / . 

a ; a (J 
? P+i0= ! B ) 

an~ x - 

S(O = cos 0 as(@) + {e*"(0) — acosd + Ko! sin J 
» 

FF and the circulation is given by 
h(a) . h(o) ' 

2 ‘oy — + wh(6) 2? Y= 2rju ky + (1 + ADK 
sin @ | sin @ f 

On the assumption that g() = O(e), a = Oe), we have 4 = 

I (di > dO zat O(e), B = (6), C = 0(e), so that Eq. (8) can be further simplifit 
1(0 = Re < k é “— {P’(0) — O*"(@)} aware eae ‘ eae ; 

) dé da for? + 0, x to give 

I " J - 
Ave = ¢"(6) (1/2) [g*(O g*(7)}| cos 6 j/tC = 1 T 

g*’(0) sin 8 — (1/2) [g*(O) + e*(r)] where 
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Inserting this into Eqs. (9a), (9b 

READERS’ 

a = (1/p) (A/sin d 12a 

1 Bb? C 
(4 +h - 12b 

2 sin? d sin J 

Hence the pressure coefficient is expressed as 

W A? 

2 sin? d 

nen 

= —29; — p*g;* — 2q2 + ()( €3 

1 /2) po U’ 

2 1 A? — B? 2C 
sees - — (1 + Xd) —— 4+- (13 

yw sin’ sin? J sin 0 

For the incompressible case (J = 0), Eq. (13) reduces to 

2A (= B? oC 
Co = - > : : + = 14 

sin U sin? J sin J 

It is obvious that Eqs. (13) and (14) have similar constructions 

to those of Van Dyke's Eqs. (2) and (1 But our formula (13 

is the merit that it enables the pressure distribution to be cal 

‘lated directly from the function representing the airfoil, 

ad) = t (ov T t?¢ (3) T o- 15 

y means ol Eqs (Ya)(9d Moreover, it must b pointe d out 

} , j « j ) ] } ai 

Dyke's formula (2) ts, in reality, applicable only to the th if Van 

ve 0 | 

nonvanishing 

such as ¢ lliptic cylinders) but not to the general case 

(0) (suchas Kaplan's profile 

In the following the application of our formulas will be illus 

trated by taking two typical cases 

EXAMPLE (1 ELitiptic CYLINDER AT ZERO ANGLE OF ATTACK 

Here 

v) = tsind 16 

Hence 

v) = tcosvd 

nd from Eqs. (9a)-(9d), we have in succession 

{ = tsind, B=tcosd 

P+iQ =te—" P—Q*=0 

C= 0 

Consequently, Eq. (15) becomes 

Cp = 2t/m) — (1 + A0(1 - cot? 3 7 

This is in agreement with Van Dyke’s relations (1) and (2 

EXAMPLE (2)—-KAPLAN’S PROFILE AT ZERO ANGLE OF ATTACK 

Kaplan's profiles are parametrically given in the form 

x = cos 6 — (t/4) (cos 86 — cos 36 18 

y = (t/4) (3 sin @ — sin 36) 19) 

vhich can be also expressed in the form (3) with 

3 sind? — sin 38) — 

2S 1 l 

{? (si v4 sin 30 — sin 50 + ((t3) 20) 
g 9 9 

, (9d) gives 

= t (sin 3 sin 30) — 
} 

3 3 5 
t? (sin vv + sin 30 — sin 5? (21a) 

R 9 9 

5) 

= t(cosvU — cos 3 — 
4 

= - _ 
_ o v0 - 

t? (cos go -. cos 30 — cos 5a (21b) 
8 9 9 
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ee oi : 
P+i1Q = t? sin? (¢ ewer Ot 

3 : . 
= — t? ¢ t P , 

16 

where P(e”) is a polynomial in e~'”, which contributes nothing 

toP —Q*. Thus, 

P- v* = —(3/8)f2 cos¥ 

and hence 

C = (3/8) sind’ 2k 

Substitution of Eqs. (21a), (21b), (21c) into Eqs. (12a), (12b), 

and (13) gives 

= cos 20 - cos 20 + 5cos 43 22a 

2 p S pw 

Qg 
( = 72 (1 + cos 470 ] N)f*( 1 > cos 40 2YPb 

16 16 

. 

( = cos 20 cos 2W 5 cos 470 

7 + yu 

l A)t*(1 + 3 cos 40 23 
j 

which agree with Kaplan's results. For J = 0, (23) becomes 

Cc = 3¢t cos 20 (3/4)771 + cos 20 + 8 cos 408 24 

It will readily be seen that Eqs. (23) and (24) do not satisfy 

Van Dyke's relations (1) and (2 In this case the knowledge 

of the incompressible pressure distribution does not suffice to 

predict the compressible pressure distribution 

Finally, it may be interesting to remark that the formula (8 

uniformly valid near the stagnation points 0 = 0, x, so that it 

is essentially the extension to the compressible case of the second 

order velocity formula which has been obtained by Lighthill' 

with the aid of his famous technique 

In conclusion, I sincere thanks to Dr 

Milton Van Dyke for sending me the manuscript of his paper 

wish to express my 

before publication 
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Wedge Pressure Coefficients in Transonic Flow 
by Hydraulic Analogy 

Richard G. Fleddermann and Robert T. Stancil * 

Associate Professor and Graduate Student, Respectively, 
Guggenheim School of Aeronautics eorgia 
Technology 

October 18, 1954 
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I HERE HAS BEEN much discussion lately concerning the use of 

the hydraulic analogy for experimental research in the 

transonic field. This interest has been accelerated by the cheap- 

* Now, Aerodynamics Department, Convair, Fort Worth, Tex 
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ness of the water table apparatus to construct and its ease of 

operation. Moreover, the problem of wall shock wave reflection 

in transonic testing is easily eliminated by suitable traps at 

the edges of the water table. 

In the Georgia Tech water table the model is towed through 

water of !/4-in. depth The water height in the vicinity of the 

model was measured by means of surface contact probes. The 

probes were connected to an electrical system that produced a 

signal at the time of contact between probe and water. All 

probes were originally backed off and gradually lowered during a 

run until surface contact was made. The ratio of the water 

height, d, thus measured to the static height, d,, yields the density 

and temperature on the body. The pressure coefficient is given 

by the usual formula 

C, = (1/.M,?) [((d@/d,)? — 1] (1) 

rhe pressure coefficients obtained by the hydraulic analogy are 

restricted to the flow of a perfect gas of specific heat ratio, y = 

0.8 
AM 
OM 4 

O77 om 0.97 
0.6. \| x mM 0.852 

; \--- GUDERLEY’S THEORY 
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Fic. 2. Pressure distributions over a 15° wedge at zero angle of 

attack, 
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2.0. The pressure data must be corrected to y = 1.4 by the, 

of suitable correction factors as outlined in reference 

Crossley and Harleman! found transonic pressure distributi, 

over 9° and 20° wedges using the hydraulic analog In 

cases they found good agreement (with theory) over the a 

length ar proximate range 0.2 < x/c < 0.8, where c is the chord 

x is the distance from the leading edge. Near the nose and + 

trailing edge of the wedge the agreement was poor Laitone 

Nielsen? utilized 10° and 40° wedges in a series of transonic 

experiments using the hydraulic analogy They were concern 

primarily with the pressure distribution from the nose of + 

wedge to the detached bow 

tributions, as compared with the results of small perturbati 

theory, also exhibit poor agreement in the vicinity of the nos 

If the analogy is to be used to obtain data in the transonic, jt 

imperative to find whether this poor agreement is caused |} 

something inherent in the analogy itself. 

Griffith® obtained accurate pressure and drag data for wedg 

of various included angles in transonic airflow The drag « 

efficient curve of Fig. 1 was determined by Griffith to be the best 

fit to the various theoretical and experimental results for 

included angle wedge. The experimental points in Fig. 1 wer 

found in the water channel for an 18-in., blunt-based, 15° wedg 

There is a serious discrepancy between Griffith’s curve and tl 

water channel data However, an examination of the origin 

curve, Fig. 14 of reference 3, shows that there is a large spread ir 

the data, which were used in determining the average curve 

The water channel data fits within this spread 

The water table pressure distributions over the 15° wedg 

at Mach Numbers of 0.852, 0.97, 1.08, and 1.20 are plotted j 

Fig. 2 (the drag coefficients of Fig. 1 were determined from thes 

pressure distributions Guderley’s theoretical result for flow 

over a 15° wedge at Mach Number 1.0 is shown for comparisor 

There is only a qualitative agreement with theory. The dis 

crepancy is threefold: the sonic line is shifted forward of th 

shoulder, the center portion of the pressure distribution is essen 

tially flat rather than having a strong pressure gradient, and th 

nose stagnation pressure is low 

The first two discrepancies can be 

action of viscosity in a real case shifts the sonic line forward but 

The flow about the shoulder in the 

treated together. TI 

does not affect the gradient 

water channel is equivalent to the flow of water over a free over 

fall. Rouse‘ has shown that the water height at the shoulder ts 

less than critical (J = 1), the exact height being a function of 

the downstream conditions, and that the critical height is y 

The height at the shoulder may be 

The critical point may be shifted 

stream of the shoulder 

little as 0.715 the sonic height 

toward the shoulder by raising the downstream pressure. Mor 

over, under certain conditions the flow height upstream of t 

real critical section may decrease appreciably. This would ¢ 

plain the decrease of pressure gradient and the upstream shill 

of the sonic line for the water channel data 

The last discrepancy, the loss of stagnation pressure, 1s an I! 

ertia effect, analogous to the time lag effect in high-speed aero 

dynamics. Height recovery near the stagnation point is effect 

in a short distance. At the higher speeds the time for recover 

is so short that the water is unable to accelerate rapidly enoug 

in the vertical direction to recover the total head depth. T! 

head loss is dissipated by a series of wavelets emanating from t! 

stagnation point. This loss is accentuated for a sharp-nos 

body by the difficulty of obtaining depth measurements near 

the sharp leading edge. 

Any quantitative utilization of the hydraulic analogy for 4 

termining transonic pressure distributions would have to tak 

into account the pressure loss at the stagnation point and th 

fixing of the sonic line at the proper position. The sonic lin 

fix point does not pose the same problem for bodies with co! 

tinuous slopes since pressure downstream of the sonic line be 

high, thus obviating the large drop in depth at the apparent ® 

point. This problem arises for blunt-based bodies or for bodte 

shock wave The pressure dis 
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where t sonic line occurs theoretically at a discontinuity in 

slope 
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A Dust Method for Locating the Separation 
Point 

A.M Smith* and J. S. Murphyt 

egundo Division, Douglas Aircraft Company, Inc., El Segundo, 

Yetober 17, 1954 

| ‘iE PURPOSE OF THIS NOTE is to call attention to a relatively 

unknown, but simple and accurate, method of locating the 

separation point lhe method is far more precise than the tuft 

method; it supplies a permanent record, and it appears more 

convenient to use than other precise methods. The senior 

wthor learned about the technique from personnel of the 

National Bureau of Standards, Washington, D.C 

The technique is as follows: 

1) Near the anticipated separation point smear a thin coat 

SAE 10 Oil is 

The film should be so thin that there is no tendency 

of oil on the surface to which dust may adhere 

convenient 

for the oil to flow 

b) Downstream of the model, in the wake, introduce a suitable 

fine dust. Since the separated region contains reverse flow, some 

of the dust will blow forward and stick to the model—but only 

within the separated region. Taleum powder has proved satis 

* Supervisor, Design Research 

T Aerodynamics Engineer 

Fic. 1 A satisfactory tale dispenser 

FORUM 

LAMINAR 

ONTAMINATION FRO 
SUPPORT STRUT- 

TURBULENT 
<a Oe 

Fic. 2 Typical dust patterns 

factory. Any other light powder would do; undoubtedly, 

inon flour would be satisfactory 

One satisfactory tale dispenser designed for operation from 

air supply and suitable for a small 

The air and flow 

by a small regulator A wl 

compressed wind tunnel 

rate ar shown in Fig. 1 pressure 

ich discharges through a hose 

com- 

a 

1s 

controlled 

to the 
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on-off button valve. The tale is held in a hopper C covered by purely laminar regions are noted, together with a transition re. 

a spring-loaded lid F. The tale is aspirated into tube D partly gion between the two created by transverse contamination 

by the aspiration effect and partly by pressurization through line The central picture, taken in the Douglas water channel js jp. 

B. At E there is a pointed screw for adjusting the flow rate of cluded because it shows well how the dust technique works. ]j 

the powder. The tip of the dispenser is */;s-in. copper tubing dust is discharged in the wake near the right-hand margins of 

and therefore can be bent as needed for best application. As air the picture, the strong eddying, circulatory motion will carry 

pressures only slightly greater than tunnel static pressure are the powder to the forward limit of the reverse flow. The water 

needed, flow from the dispenser does not interfere appreciably channel and dust techniques for locating separation have beep 

with the model flow field. The dispenser shown is about 4 ft. found to agree well. 

long. 

Fig. 2 shows typical results as obtained on several tail fairings The dust patterns do not produce a sharp boundary. On the 

of a 60-in. long by 6-in. diameter body of revolution. Except for present size models the region of transition between zero and 

photographs (2) and (3) from the top, all represent turbulent full dust concentration covers about !/s in., indicating that the 

separation. Photograph (2) shows a case of laminar separation. separation point may not be absolutely stationary However 

As the model was supported from below by a thin strut, the as the transition band is only about !/,; in. wide, the accuracy of 

lower portion of the flow is turbulent. The purely turbulent and the method is high. 

7 

Equations for the Chordwise Center of Pressure for the Basic Twist Distributions on Triangular 
Wings Having Supersonic Leading and Trailing Edges 

R. N. Haskell, * J. J. Hosek, = and W. S. Johnson, Jr. Tf 

Convair-Ft. Worth Division, General Dynamics Corporation 

August 2, 1954 

K AINER, REFERENCE I, has presented equations for chordwise pressure distribution and spanwise load distribution for triangular 

wings having supersonic leading and trailing edges and constant, linear, parabolic, and cubic twist distributions. To utilize these 

results in aeroelastic studies, analytical expressions for the chordwise center of pressure are also desirable 

These equations are derived from 

a _— Ap 
crac A); = ¥ dx 

JIL q 

where .Y = distance of chordwise center of pressure from yaxis. For the twisted wing the chordwise center of pressure is defined as 

4 = +3 (¢ cX) > e (Cy 

i=0 i=0 

The equations for (c,,c.Y); are as follows: 

- 2a (co/y) tan 6 + 7 /F . i asa — 4 
(16.5 )o = = (m? — 2) (0, + O62) + 20? ~/ m2 — 1 log ( 

rtane V m? — 1 m t 

r 4a,m?B (co/y) tan 6 + 7 |! ; n*(2 — 3m? 
(c,cX), = - = on 2V m? — 1(1 — #7) 7? — (6) + 6 _- = V (m* — 1) (1 — 

3r(m? — 1)°/7] mi mt 

nO, — 6 | 
3m + 0(2 — 3n 

2m%t? { 

= 2aomB (co/y) tané6 + 7 |* §2(1 — 2m?) — 3m? 
(cncX )e = z ; ) - VUm?—-1V1-f@ + 

a(m? — 1) / m | 2 

0, + 0 7? V1-¢ 2mn4 { 
— [m* + 2m* + m‘t*(4m? + 2) — t4(4m* — 5m? + 2)] + - (m? — 1)/? log _- (A: — % 

4m?* f m?* t { 

ie 2a;m*B f|-(Co/y) tan 6 + 7 [P42 : , ? : : 
(cncX )3 = - = - Vm? — 1(1 — £)/? (414 + 21m?) + 4m? + 11] - 

32(m? — 1) mk 5 

pee | n° = - {15m* + 48m? — 8 90m — 9m4 + 68m? — 24 
~ (3m? + 2) (0: + 02)7 + —~WVms—-1l vif ; + = 
5 f 10m?t t? m* 

eae —  §9m(m? + 4) — 3m(2m? + 3) 3 : \ { 
(4m? + 1) (0: + 02) + 7° : - - (20m — 35m* + 28m? — 8 (0, — A 

| $+ 2t? 20m° f { 

All symbols are defined in reference 1 and / is evaluated at the trailing edge. 
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Conditions for the Appearance of Shock Waves 
in Steady Flows 

Raymond Marchal 

ngenieur en Chef de I|’Air, Professeur 4 l’Ecole Nationale Supér- 
eure d’Aeronautique (Paris), Directeur Technique de la Société 
Nationale d'Etude et de Construction de Moteurs d’Aviation 

ET US CONSIDER the steady flow of a perfect gas issuing from 

L in ideal centrifugal impeller delivering into a plane area 

ocated between two infinite planes ABA’B’ and CDC’D’ 

The stream lines are identical and can be deduced from each 

ther by a rotation about the impeller’s axis. Assuming the flow 

to be isentropic, the stream lines are determined by the conserva 

on of the angular momentum r7z;, of the mass flow prz,, of th 

nergy + [2/(k 1) |a*, r denoting the distance to the center 

ff the impeller, 7, and v, the components of the velocity v7 along 

the radius vector r and the tangential direction, and a the sound 

speed 

Let m be the dimensionless number 7,/a 

culation that the circumstances of the flow differ greatly, at 

It can be verified by 

the outlet of the impeller, according as 7; assumes a value m lower 

w higher than 1 

For the first case, the stream line is a spiral (AB, on the figure 

the Mach Number decreases steadily to attain zero at infinity; 

ind m also decrease to zero 

In the second case, 

AB., v tends toward the limiting speed v, corresponding to vanish 

ig density; the pressure decreases to zero; v; increases steadily, 

vhile » and the conventional Mach Number _\/ increase without 

imit 

The stream lines have no inflection 

The cross section of a stream tube (between two stream lines 

as follows: along AB 

if the conventional Mach Number at the outlet 

whaves the section is increasing with 

ilong AB,, 

of the impeller is less than 1, the section is permanently increasing, 

vhereas if the Mach Number J, at the outlet of the impeller is 

ibove 1, the section first decreases to reach a minimum at the 

sonic throat, where JJ = 1, after which it increases 

In a perfect fluid, free from any friction against the walls, the 

mly possibility of having a flow differing from those considered 

itbove results from the possible appearance of stationary shock 

vaves. But such waves, according to symmetry, must be cylin 

drical about the axis. These waves are therefore oblique waves 

[tis well known that in the passage through such a wave the ve« 

ocity component normal to the wave must jump from asupersonic 

toa subsonic value. Such a wave can only be conceived on the 

un lines of the ABs type 

the stream line is a curve with asymptote 

@ 
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The fluid motion considered above is of the well-known typ 

associated with a vortex-source The two types of stream lines 

correspond to the two possible types of this vortex-source mo 

tion, both defined outside of a limiting circle. The following 

properties are easily verified and do not seem to have been fully 

reported to date 

a) The limiting circle corresponds to m = 1 

b) The subtangent OH determining the position of the asymp 

tote equals 

(c) The radius of curvature ® of the trajectories is related to 

m by the relation 

The number m, ratio of the velocity component normal to th 

isobar lines and the local speed of sound, possesses the following 

noteworthy properties: 

(d) In the m > 1 field, the transition from a supersonic to a 

subsonic state can only be achieved through a shock wave 

e) m = 1 is characteristic of the limiting line 

f) Continuous variation from a supersonic to a subsonic state 

1 field 

It is quite natural to endeavor to extend these properties to 

can only be observed in the m 

any plane flow in which isobars are equally isochores and iso 

velocity—a condition often observed, for instance, when the 

stream lines issue from a common source,without crossing shock 

waves, or undergoing shocks of equal strength 

It is possible to check intuitively that the statements (d), (e 

f) are valid by replacing about a certain point the con 

sidered flow by a tangent vortex-source flow, determined by th 

knowledge of the partial derivatives of the pressure which, be 

cause of the above assumptions, implies the knowledge of th: 

partial derivatives of the temperature, the specific mass, and 

the velocity 

For any plane flow, and considering intrinsic axes (x tangent, 

y normal, ® radius of curvature of the stream line), we can writ 

Op/dov = p(v?/R ] 

Op/ox = pv'( Ov / OX la 

Note that on the isobar dp = 0, or 

Op/dx)dx + (Op/dy)dy = 0 

Denoting by a the angle between the stream line and the nor 

mal to the isobar facing the stream direction (positive normal 

dx /dy = tan a 

Thus 

Op Ox) tan a + (Op Oy () 

hence, 

Op Ox = —p KR tana 2 

Then Eq. (1a) yields 

ov/Ox = “% tan a (3 

The geometrical inte rpretation of Eq 3) is as follows 

(g) Whenever the positive normal to the isobar surfaces is di 

rected toward the trajectories’ concavity, there is expansion and 

icceleration. In the opposite case there is compression and dé 

celeration 

A flow of the type investigated in the opening paragraph sl hall 

be locally identical to our plane flow if it results from a vortex 

source yielding, at the point under examination, the same ® and 

a values. Now, & in a vortex-source flow is connected to thi 

radius-vector ¢ through the relation 

* Courant, R and Friedrich 

252-254; New York, 1948 
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We can determine, then, the center 0 of the tangential vortex 

source by plotting on the normal to the isobar the value of r given 

by Eq. (4 The mass flow D and the vortex intensity / are given j 3 g 

by 

D = 2nrpiv, = rRp v|sin 2a/(1 m?) 

I = (@Rv/2) [sin 2a/(1 — m?) 

This generalization of the (d), (e), (f) properties, based upon 

the agreement between both flows up to the second order for the 

stream lines and up to the first order only for the isobar surfaces, 

offers the advantage of setting forth a characteristic number m, 

whose experimental measurement is possible in actual flows 

l a*{r(ru? + 2suv + tv?) + t(v%t 

By introducing the compressible potential equation 

r+t =(1/a)(ru? 

it is found that 

a simple expression for 17 

M. Pérés has deduced from Eq. (6) another observation con 

cerning the properties of the number m. For that purpose, he 

writes Eq. (6) in the form 

| (1/m?) = [17?/(r + d?]A 7) 

A denoting the Jacobian 7/ — s* of the transformation. l 

Matrix Method of Coupling Shear Flexibility 
and Rotatory Inertia in Bending Vibration 

Marvin Stern 

Design Specialist, Convair, San Diego, a Division of General 
Dynamics Corporstion 

October 22, 1954 

INTRODUCTION 

_ INFLUENCES OF shear deformation and rotatory inertia on 

the bending vibration of beams have been recognized and 

have been treated in the literature.! Their effects have been 

especially well treated in the differential equation approach to 

the vibration problems.* These results have shown their in- 

fluence on the vibration picture in their modification of the modal 

shapes and frequency spectrum and in their introduction of a 

second (and completely new) spectrum of natural frequencies 

For practical purposes, it is obviously advantageous to ap 

proximate a nonuniform beam by a system of discrete lumped 

masses. In addition, the matrix method has certain inherent 

assets. Some of these are: 

(1) The utilization of ‘“‘overall’’ structural influence coeffi- 

cients. 

(2) The possibility of capitalizing on well-developed algebraic 

methods. 

(3) The adaptability to machine computation. 

For the sake of these advantages, the matrix method has been 

extended here to include the additional effects of shear flexibility 

and rotatory inertia. 

AERONAUTICAL SCIENCES APRIL, 1955 

M. Pérés, member of the Académie des Sciences of Paris, | 

given the mathematical expression for m in the case o co 

pressible flow with velocity potential 

Denoting by u, v the first derivatives and by +, s, ¢, the seeo 

derivatives of the velocity potential g(x, y), he not hat th 

isobar, which is also isovelocity, is determined by 

u(r dx + sdy) +2(sdx +tdy) =0 

The normal to the isobar is directed as the vector (wu 

(us + vt), whence the value for m? is given by 

ju(ur + vs) + vius + vt 
mm? = 

a?|(ur + vs)? + (us + vt 

+ QZsuv + ru?) + (s? — rt) (u? + v?) 

and A have the same sign and the boundary between two heids 

m > land m <1 of the flow is established along a singular line 

of the hodograph plane-flow plane correspondance. This lin 

may be a so-called transition line in the flow plane or a limiting 

line in this plane. In case A changes sign passing through the 

infinity, we have to deal with a limiting line in the flow plane 

but, then, there is an overlapping in the flow plane and suct 

condition is physically impossible 

It is quite obvious, in a continuous flow, that we can only 

change from a supersonic to a subsonic state (or conversely 

with a field m < 1 

From a flow with m > 1, then necessarily supersonic, it will 

impossible to return to a subsonic state, without first crossing 

either a shock wave or a transition line. 

The introduction of the additional frequency spectrum found 

in the differential equation approach is clearly portrayed here 

It is shown, however, that a beam of » iumped masses would have 

2n natural modes and frequencies only if both the effects of shear 

and rotatory inertia are included. The inclusion of either effect 

alone, although influencing the frequency spectrum, still results 

in only frequencies. 

This result appears to be contrary to previous matrix attempts 

at the inclusion of rotatory inertia alone in the bending vibratior 

analysis.*® In effect, our results show that these previous at 

tempts had resulted in matrix eigenvalue problems that may not 

have been reduced to their simplest forms 

(1) CANTILEVER BEAM 

We consider first a cantilever beam, divided into discrete mass 

stations and vibrating at a natural frequency w. The bending and 

shear deflections of the 7th mass point are given as the sums of 

the deflections at this point produced by loads applied at each 

station over the beam. 

‘= > aii, + De bistid 

: j 1.1 
> «iP, ( 

where 

yi = bending deflection at 1 

z; = shear deflection at 7 

a;; = bending deflection at 7 due to unit force at j 

b;; = bending deflection at 7 due to unit moment at 7 
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—_———_ 
n AD + BD /E 1D y 

dx where \ 1 /w* 

Although we have now found a (2)? dynamic matrix, we note 

the following cases 

Case (1 No Rotatory Inertia When D 0, it is evident 

X, i that the matrix in Eq. (1.3) has only » independent columns and 

is therefore only of rank mn rhe remaining eigenvalues corre 

spond to # natural frequencies being infinite These » modes are 
A , 

Y | — discarded by a simple addition in Eq. (1.5) yielding 

A : AX 1 + CID x 1.4 

Fic. | 

where x Bae total deflection 

We have thus found that when rotatory inertia is neglected, 

the problem reduces to » independent coordinates representing 

nae the total deflections and a frequency spectrum of » values 

Case (2) No Shear Flexil y When C ), ¢ 0, Eq. (1 

4 becomes simply 

f by ID, + BD,E\n 15 
F 

m, / , , , 
x; di Phis again is an eigenvalue equation with only » independent 

i 3 coordinates, the bending deflections 
ds 

helds We have thus derived the three matrix eigenvalue equations 

r line ttn — Eqs. (1.3), (1.4), and (1.5), which represent the bending vibration 

» Lin 0| ak problem where first the effects of rotatory inertia and shear flexi 

ting : I ———e see’. amines: mamta ead been included tog ther and then each independently bility have | 
} . . 

1 the y It is found that only for the case where they are both included 
| 7 1 V1 + Zy 
fall do we obtain a second frequency spectrum 

suci — ; —— It has been shown? that, for a solid bar of rectangular cross 

section, the effect of shear flexibility is four times the rotatory in 

vary ertia effect With stressed-skin aircraft structures, this com 

rsely MIG. = parison Can be expected to be even greater For both pract il 

ind computational purposes then, it seems reasonable to calculate 

bending vibration modes and frequencies with the inclusion of 

ang shear flexibility alone 

hear deflection at 7 due to unit force at 

inertia force at / Il) FREE-FREE BEAM 

inertia Moment at Following the model of reference (6) we derive the dynam 

ident that matrix with shear flexibility included, for the free-free beam 

rhe deflection equations ar« 
al y 

ere wlw ~ > 

> 
lear 

fect } mass at station ) 

ults | rotatory inertia at station where the a;; are the influence coefficients of the beam considered 
R bending angle (rotation angle of inertia segment) at to be suspended as a cantilever at station 0) In matrix operator 

pts | tation form, these equations are written 
101 

trix Operator notation, Eqs I.1) are written \ 

" 1D 1D BD, a N l 1 Cive % II 

v é iz ¢ 

CD CD 0 A 
wher 

ASS \ : 
: + 1 

nd ' I . 
@—=|l¢o 

ol 

ch lhe conditions for the determination of the additional variablk 
I a;;), B i), C - ( 

| come from the imposition of the equilibrium of forces and 
ml 0) (" 0 - ¢ 

iB) ’ _ | = ” : dD, I moments 
l t) \y 

] iy O \ 

Applying standard difference interpolation formulas, we can Dix 4 ) 11.2 

xpress 6 i linear operator on yn. (NoTE: The bending de ae 00 ¢ 
a oe . : : . : - ' 
Hections, only, go into the determination of the rotations of inertia ; nan 

‘ment i : . where the asterisk indicates transpose 
_ We express this relation as . 

é - a Application of the operator ( )p to Eq. (11.1) and insertion 

‘his reduces Eq. (1.2) to the following of the equilibrium condition (II.2) yields 
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Noting the following definitions: 

- 
= Sim =M 

_) 
mo + 1* D1 

i 0 

£*p>,1 = I°Dt > mix; = S first moment 
hi 

D,,é > MIX I (second moment 
0 

we find Eq. (11.3) reduces to 

Ws y l 

— = WwW D,, (A C|Dnx 

S I ital & 

This equation, which represents the satisfaction of the equilib- 

. *.* . y 

rium conditions (II.2), is solved for ( 
val 

) Insertion into Eq 

II.1) then yields m homogeneous equations in 7 unknowns 

w? ' ( I rey () D ' 1D 

ewe tae a a ere re 

] 
1 CiD.wx = ee 

In a more condensed form, this can be written 

GD.jA + CIDax = dy 11.4) 

where 

D,,AA C)D = [D,,(A C)D 

l ( I a (| 
G* =G Dy“ — (1, é ) 

Vi - S —S MM é 

] ] 
= ) bij — I+ Mx;x; — S(x; + x 

ton VWI- S? : as 

rhe new (”)? dynamic matrix, whose diagonalization yields the 

required natural frequencies and modes, is 

GD,,{A + C]D 
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Equations for Loading on Triangular Wings 
Having Subsonic Leading Edges Due to 
Various Basic Antisymmetric Twist 
Distributions 

R. N. Haskell and W. S. Johnson, Jr 

Senior Aerodynamics Engineer and Senior Structures Enginee 

Respectively, Convair-Ft 
Corporation, Ft. Worth, Tex 

November 8, 1954 

SUMMARY 

Using the integral equations presented by Zienkiewicz for the 
ar 

symmetric boundary condition, load distributions are fe 

with local incidence proportional to /, /*, and 

SYMBOLS 

coetiicients of power series expansion for the ar ttack 

0/2 wing semispan 

constant coefficients, see Appendix B 

local chord 

average chord R/2 

local chord wise lift coeflicient 

R root chord 

D function of B and a 

I elliptic integral of second kind with modulu \ 

I function of m, K, and / 

n oh’ l 
Hi 

= 

. 7 see Ap ! 
V 1 

7! 

values of J and / 

AK elliptic integral of first kind with modulus \ 

V/ free stream Mach Number 

8 tan e, leading edge sweep parameter 

6 tan 6, trailing edge sweep parameter 

4 
lifting pressure coefficient 

J free-stream dynamic pressure 

t-like variable of integration 

> 

the conical variable 

” y 

tT} t evaluated at the trailing edge 
Rk tan 6 

rectangular coordinate origin at the wing verte 

the streamwise direction positive upward 

distance of chordwise center of pressure from ix 

p VM l 

6 complement of trailing edge sweep angle. see Fi 

€ complement of leading edge sweep angle, see | 

y (6/2), nondimensional span coordinate 

N local wing incidence in radian 

ANALYSIS 

Gencral 

Fe THE ANTISYMMETRIC boundary condition where local 1 

dence, A, is: 

= ao + al dal- -- Ast ray 

and 

Ax, ¥) = A(X, v 

Zicnkiewicz! has shown: 

A (“) l 

gd B V om? / 

and 

8 sp f{"™ O it 
) A= - H(s, t) ) 

x 4k! Os 

Worth Division of General Dynanj- 

rre wt 

yhat 

Para! 

Cubi 
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Vings If all the a; are zero for : = U, 1, ,k — land a, ¥ 0, the 

to yolynomial will be called a pure kth degree polynomial and the Y, nN 

responding twist will be called a pure kth degree twist. In 

vhat follows the terms linear, parabolic and cubic refer to pure ‘ MACH LINE 

first degree, pure parabolic, and pure cubic twist, respectively ~ =| 

r For any k, Zienkiewiez has shown that the redundant equa- Yd 
Engineer ‘ . e >" = 
Bey tions for determining the 6; in the case of pure twist are satisfied t m i 

identically and that those remaining are just sufficient to deter- J 

ine the / vA P 

Linear 
J 

i oe This solution has been derived previously by other authors 

for wing nd is included herein only for completeness of presentation ff 

Parabolic 

= /, 

&’ . m= 
/ 

from which the two simultaneous equations are derived for the *‘ 

termination of 4; and 6 

Bh(1 + b( 61 Ths +31 () ps 
t=-! 

a \ A 
rel tOo/ 7I s] 3 S = -m— \ \ 

rhe resulting expressions for /; and /; are tabulated in Appendix % % 

B 

Cubic Fic. | Coordinates and notation 

Let 

3/x)°r t 

Kq 2) becomes 

f \ 0 ar 

fd Mee 4 Ge 24. Os \ ae 

I ; 
ds | 

| \ , ” Chordwise Center of Pressure 

rom which the four simultaneous equations for the determination The chordwise center of pressure is defined 

ot ind by are derived 

»/ + / / 1 fy AY , + , d 

8 f) = oo 
Li 12/ 9] ] 5 ( 7 € ) 

5 O]., / e , 

) h 513, 7 4+ 127 9] + 2/ = 0 (6 ind 

} Ms, 4 + 1013, 6 + 61 12,4 — Theo +21 
: Ss “= 

h dT + 1003, 5 + 12/2, , 241, « fa * ( ) 
) 

9] + 18] + 2], +] = (7 vy net = 
~ : 

> Ci 

1) + 10] + 18/ 12]; 3h1,3 + 2/ + an ( ) 
0 ’ 

h 1573, 9 + 10/7 + 36>. 7 24] 

27h, 5 + 18h. 3 + 6h, 1] =() (8 
where x is the distance of the chordwise center of pressure from 

the yaxis 
Eqs. (¢ nd (7 : : unit ; 1s. (0) and (7) can be shown to hold identically, therefore Eqs. 7 . 

‘ : 4 rhe expressions for (A,/q);-(eic/Ca ind *; are tabulated in 
S) are solved simultaneously for the unique solution for 

Appendix A 

Span-Load Distribution REFERENCE 
| , : , : 

The span-load distribution is defined as: 
Zienkiewicz, H. K 1 Note on Generalized Conical Fiel th Applica 

| Cu l Paes A tion to Lift on Twisted and Cambered Delta Wings with Sut Leading 

= dx Edges, English Electric Co., Ltd. Report No. L At 050, August, 1953 
) J xr} q/i ASTIA, AD 22135 

(Concluded on page 280 
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Buck Appendix A 
Se 

Loap EQUATIONS FOR THE Basic ANTISYMMETRIC TWIST DISTRIBUTIONS 

Linear 

Ga) ( Y ; 

Ct Sag eters T’ 9 P Sie C} 2)| n f, 

y Cr 2) tan 6 r F ” V0 
- } og | \ 2/9 9 

2 af ta € | \ ” / P T 8 - 

Par bolic 

( =?) ( \ ) byt at 

3 V/ im? fe 

> / . 
Cy 3n an VV m- try h 2m- b rT] Vw tr 

‘ log 

( Ch b/2)m? trp ” tr. 

{ Vin tr. m? + 2tre2)b) + 3m%tr.¢.2l | 
( i ) DUG 2) tané6 + n 

his = ” Von { ) } tan « }» hr tr] / 2m2b;) log \ 

Appendix B 9 
TABLE 

Numerical Values of the ); Coefficient 
TABLE | 

. 7 . ~ Line: Parabolic I 
Expressions for the / Coefficients is ais : . i 

= ” b,/D b, /D bs; D D ) 2 | 

Fb,/D 0.1 0.004988 0.000988 0.000480 0.00001838 0. 00002427 . 

Linear m1 m? 0.2 0.019809 0.007708 0.003591 0.00027675 (0). 00037925 Le 

Parabolic m?* [2(1 2m?) E m2] m2) A 0.3 0.044085 0.024997 0.011162 0. 00129747 0 0016694 : 

Cubic 2(15m4 Om2 + 2)] 32 (972 ») | 0.4 0.077260 0.056353 0.023874 0. 0036964 0. 004557¢ | Le 

2K 1E 0.5 0.118648 0.103957 0.042086 0. 0080898 00095402 ) : 

: 0.6 0.167569 0. 168894 0.065453 0. 0149668 0 0169429 

Rie/D ns peta nats Sts : aaa \4 0.7 0. 223297 0.251095 0.093465 0.0246952 (0). 0269278 ‘ 

Paraboli Ty m* DE nh 0.8 0.285110 0.351214 0.125614 0. 0375282 0. 0395575 Kd 
. . - » 

r Cubs ym] 0.9 0.352332 0.467196 0.161572 0 052439 ) 05582 K Li 

Linear 

Parabolic “| * 

Cubic 3m? 5407 

L035m4 

Lim? 

IE-XPRESSIONS FOR 7/3, » 

Appendix C 

AND | , COEFFICIENTS 

Linear ie : m1 — Om2)K S 7m? 3m +) F 

5 
/ = = 

‘ Lom‘ (1 m 
: l6a 

1 C 

Parabolic =~ aa ee . » : 
omrp , io — Mi 24 E m*(Y nN 

8 oem GF ) 2 157761 m? FIG Cubic 
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Buckling Loads for Beams of Variable Cross 
Section Under Combined Loads 

hanic epartment, USAF Institute of Technology, Wright- 
“ A vn 

AFB, Ohio 

™ 4UTHOR! HAS PRESENTED curves for the buckling coeflicient 

for columns of variable cross section for all taper ratios and 

moment of inertia variation between constant and sixth power 

is note presents curves for the lateral buckling coefficient for 

er beams with the same variations as for the column case 

sives interaction curves for buckling coefficient under com 

Timoshenko? 

lateral stability case for a beam with constant mo 

ind compression loads on the bean 

s solved the 

otf imertia Martin® has obtained interaction curves for 

combined loading for the constant moment of inertia case 

for the zero taper case with linear moment of inertia vari 

nm. Boley and Zimnoch* have indicated an approximate 

eric procedure for the lateral stability case. DiMaggio, 

Thomas, and Salvadori? have obtained an interaction 

for tl constant moment of inertia case Yoshihara® has 

ed the lateral stability case and obtained the interaction curve 

ind thickness (#7 = 4 case below linear variation 1n W 

From Fig. 1, the taper ratio, the smaller moment of inertia 

riation, and the twisting stiffness variation are defined by, re 

tively 

Y ; : Xx 

¥ ae | / ‘ ( ( l 
ri T a a 1 

ere for solid section r + 3s with x the width variation 

the thickness variation. The variation of C is approxi 

for r + s, but this approximation is close for pr ictical cases 

which / is small compared with the moment of inertia about the 

ith the coordinate system of I ig ti the differential equations 

1¢ deflection y and the angle of twist @ are 

El,x"y" + Pas Qa"(x — a), . . » 
GOx"0' = Qa”™ ly — —a)y i 

vith boundary conditions y = Oat x = a, y’ = Oatx a+lL, 

9= (at y 1+ L. This system can be solved by taking y as 

infinite series in powers of x or 1/x, depending upon whether 

0 | 2 2 4 5 6 
nm 

“IG. I. Lateral buckling coefficient k, in terms of column 
buckling coefficient k 
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1.0 

0 02 04 06 08 1.0 

Fic. 2 Interaction buckling curves for combined loads 

\ 0) or x is a regular singular point. With P? 0), the 

boundary conditions lead to a determinant for the lateral buck 

ling coefficient With assigned values to ?, the determinant gives 

QV, whence on the interaction curve between the lateral buckling 

coefficient and column coefficient « ” constructed 

3y change of variables® in sequence 

v — r-— v 4 6 

i dy, /dt } 

Eq (2 becomes 

l tl + t12 + (m — Ol + 2+ 2 (mn et 4 

(1 —T? l 4 

with boundary conditions | Oat 0 2 f 

t)’ l Qatt = 1— a,and 

f r EI, QO V ENG J 

The determinant ts 

S* fa” -3p(1 — a)? — (9 bisa ) 6 
a] 

where 

i 7 
— ‘ 

) () 

the a, being determined from Eq. (4) in terms of m, p, and 

Although Eq. (6) and the determinant derived directly from 

Eq. (2) can be shown to be the same, the two series are quite 

different in character and involve quite different recursion for 

mulas. For some m and a, Eq. (6) converges rapidly and 1s 

easy to solve, while for other values of m: and a@ the determinant 

from Eq. (2 is much shorter to us¢ 

For the lateral instability case (7 ()) the buckling coefficient 

was found to vary with m and @ in the same way as the buckling 

coefiicient for the column case (Q = 0), which has been solved 

In fact, k¢/k = 1.63 for all a and m considered 

Qer = (2?/4) (Ra ERGC2/L | 

or Ss 

Qer = (22?) (kaV EGC 

where kg /k is given in Fig. 1 and & is given in Figs. 1 and 2 of refer 

ence | The two cases in Eq. (8) correspond to the two cases 

for k in reference | 

For the combined load case, assign values to (QP?) YW El,/GC 

and obtain p? from the determinant and hence from Eq. (5 

If these values are divided by their respective peak values for 

each m and a, then an interaction curve can be drawn Fig. 2 
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shows the results and also shows that the shape of the interaction 

curves are nearly independent of m and a@ and can be approxi- 

mated closely by a parabola. In the Fig. 2, & is the buckling 

coefficient for column load alone, given in Figs. 1 and 2 of refer 

ence 1; kg is the buckling coefficient for lateral load alone, given 

in Fig. 1; k. and kg, are the respective column and lateral buckling 

All the curves, except around 

Further, the m = 0 

Note that in the 

) should 

coefficients for combined loads. 

m = 2 and small a, lie on the m = 0 curve. 

curve checks the results of references 3 and 5 

approximate interaction Eq. (15) of reference 5 the p and « 

be interchanged. A perturbation method is used in reference 6 

to get results that agree within a few per cent of results obtained 

here for m = 4 

Thus a conservative solution for the lateral buckling coe'ti 

cient and for the combined loading case can be obtained directly 

from Figs. 1 and 2 of reference 1, as 

ke = 1.63 &; (ka./1.63R)? + (R./k) = 1 i) 

for all aw and for m variation from constant to sixth power 
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Further Comments on ‘Note on Boundary- 
Layer Transition in Supersonic Flow’’ 

A. H. Lange and R. E. Lee 

U. S. Naval Ordnance Laboratory, White Oak, Silver Spring, Md 
October 17, 1954 

—— STRONG EFFECT of an expansion on boundary-layer 

transition in supersonic flow had been observed on cone 

eylinders and hollow cylinders with outside leading edge bevels 

and had been reported in reference 1. 

A systematic experimental study of this effect was carried 

out subsequently. Transition on an open-nose truncated cone 

cylinder (cone half angle = 10°) was determined from schlieren 

pictures at J = 2.15 in the NOL Aeroballistics Wind Tunne! 

No. 1. The conical part of the model, which was originally 8 in 

long, was shortened in 2-in. steps and the leading edge resharp 

ened in each case 

Fig. 1 shows the results. Transition Reynolds Number is 

based on free-stream velocity, kinematic viscosity, and on wette’ 

length along the body contour. Transition Reynolds Numbers 

up to ~2.5 times larger than those observed on a constant pres 

sure surface were obtained. The effect begins to deteriorate 

when the cone Reynolds Number Reone (R based on cone length 

reaches the transition Reynolds Number of the constant pressure 

surface (see the auxiliary curve Reone vS.a). The boundary layer 

behind the shoulder appears to be more stable even than a 

boundary layer starting at a leading edge, as evidenced by the 

fact that the transition Reynolds Number observed is more than 

twice the constant pressure transition Reynolds Number. 

Tests reported in reference 2 show that the skin friction on a 

cone-cylinder body is under certain circumstances actually less 

than the skin friction on a carefully shaped parabolic body (NACA 
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TRANSITION REYNOLDS NUMBER 

: 
0 I 2 3 4 5 6 Lg 8 

AXIAL FRUSTUM LENGTH - a, INCHES 

FIG. | AVERAGE TRANSITION REYNOLDS NUMBER VS, 

FRUSTUM LENGTH ON AN OPEN — NOSE TRUNCATED 

CONE-CYLINDER, M=2.15 

RM 10) due to the effect discussed above This possibility w 

first mentioned in reference | 
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An Approximate Relationship Between Small 
Radius Ratio Turbine Passage Geometry and 
Radial Pressure Variation 

J. P. Fraser* 

Knolls Atomic Power Laboratory 
Schenectady, N.Y.t 

November 12, 1954 | 

i] Qa General Electr 

t 
4 i SHE PROCEDURE TO BE briefly summarized was undertaken to 

give a first approximation to the deviation from a ‘‘vortex 

radial pressure distribution in a nonvortex stage. To this end 

incompressible and lossless flow are assumed The relationshiy 

developed take into account passage geometry of nozzle 

bucket at all axial stations. It is believed that this approach 

will assist in the approximate layout of nonvortex turbine stages 

having a radius ratio approaching unity 

Essentially the entire flow is treated as one filament. Fret 

vortex radial pressure is ‘“‘corrected’’ by finding the ‘‘centroid 

* This work was done while the writer was in the Fluid Mechanics 5ec¢ 

Large Steam Turbine Division, General Electric Co., Schenectady, N. ¥ 

+ Operated for the U.S. Atomic Energy Commission on Contract N 

W-31-109 Eng-52 

Also a 
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h axial position and relating the correction to vortex of flow at 

jial pressure distribution to the radial curvature of the path of 

he flow centroid Solution is effected when radial equilibrium is 

ixial positions satished at 

The radial momentum equation in axisymmetric coordinates is 

1 oP v Ou Ou 
= — 7 — x 1 

p Or r Oo: Or 

ittention is confined to stages having cylindrical sidewalls 

1 is second order and may be omitted in an approx1- 

ite treatment 

The concept of an effective flow path is introduced The radia] 

ation of this flow ‘‘centroid”’ is defined by 

where axial flow per unit radius and the entire flow is 

1 as one flow filament The effective radial velocity of the 

nt(%—? is Written 

By talking of ‘‘average’’ conditions over the radial height of the 

yw annulus, Eq. (1) with Eq. (4) substituted takes the dimen 

sionless form 

AP (1l— 7 i — %& 27.” — t 7 o 

here AP pressure difference from tip to root and primes indi 

ite derivative with respect to the nondimensional axial distance, 

stage pressure drop; Vo, the theoretical velocity corre 

onding to Py; and r,, the average radius are the units of pres 

sure, velocity, and length used to nondimensionalize Eq. (1 T 

presents dimensionless radius. Eq. (5) is the key to solution 

of the stage pressure distribution. The first term in parentheses 

represents an approximate vortex pressure difference; the second 

ind third terms represent corrections taking into account radial 

flow 

The application of Eq. (5) is illustrated by setting up a solution 

for flow through a hypothetical nozzle. Assume that the pressure 

varies linearly with radius. That is, nondimensionally, 

rhe pressure at the outer wall is given by 

Pic) = M(z) + Ns) (1 — 7 i 

Pos) = M(s) + (1/2) AP(z S 

Solving for .\ between Eqs. (5), (6), (7), and (8), 

\ = 2[vag.2? — Werg.*Fe — Warg.Warg. Te 9 

Eq. (9) gives radial pressure gradient. The second and third 

terms correct vortex radial pressure distribution for radial flow. 

he next step is the injection of nozzle passage geometry into 
E ; ‘ 
i 9 Assume that the nozzle is untwisted or the average 

zzle flow angle is given by 

sin a = G(s (10 

Also iSSuIme 

S(s) = rF(z (11 

where S(z) is the unblocked circumference divided by pitch radius. 

G(s) and F Zz 3) i can be readily evaluated, approximately at least, 
fron 
irom the nozzle lavout 
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Assuming incompressible flow, let the nondimensional flow be 

Ff 

(} = }*? > 2 
' 

By continuity, 

t = 13 
2 — 7,)F ; 

nd ind 

( 1 — ¢ 

2(1 — 7,)F 

Substituting Eqs. (13) and (14) into Eq. (9 

@) 1 — ¢ F T 
\ . . 
\ = 2 — - 4 _ 

) 21 - i, ( I | 

Now using Eqs. (2) and (10), one can write 

ii 
( { J T- aT 

* r 7 T ~~ 16 

G / | Tar 

Now 

J Y 1 = 7 

or, using Eq. (6 

V =VY1—-— MM — .\ r— 1 IS 

Pitch line pressure distribution is given by 

V/ 1 — q 

where 

O 
7 1: 

2 - t))F 

By substituting Eq. (18) into Eq. (If 

.. f° Vin = NG SD oe 
T bs _ 1) 

{ V1- - N p= 1) eds 
. 

rhe solution to nozzle flow must satisfy Eqs. (15 

radial equilibrium 

rhe two equations applicable to bucket flow, which are anal 

ogous to Eqs. (15) and (20) for the nozzle, can be developed 

in terms of stage vector geometry and bucket passage geometry 

Solution of Eqs. (15) and (20) for the nozzle and the corre¢ 

sponding pair of equations for the bucket can be solved conven- 
i) iently by a process of iteration. 7 is found from Eq. (2 

using values of .V(s) corresponding to vortex flow rhe deriv 

atives 7.” and 7 are calculated which lead to corrected values 

of .V(s) using Eq. (15 rhe process is continued until the radial 

path of the ‘‘centroid” is a continuous curve satisfying boundary 

conditions at the entrance and exit of the Stage 

On the Determination of Local Heat-Transfer 
Coefficients for Bodies with Pressure Gradient 
in Supersonic Flow 

rving Korobkin 

U.S. Naval Ordnance Laboratory, White Oak, Silver Spring, Md 

October 11, 1954 

¢ EXPERIMENTAL HEAT-TRANSFER INVESTIGATIONS for super 

sonic flow, local heat-transfer coefficients are usually evalu 

ated from two independent sets of measurements—one set made 

to determine recovery temperatures and the second set made to 
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Fic. 1 Heat-transfer rate vs. surface temperature for hemi 
sphere at 6 = 32° and a Mach Number of 3.3 

determine heat-transfer rates Fora body such as a flat plate or 

a cone with a constant surface temperature and no pressure gra 

dient, the local heat-transfer coefficient 4 is determined from the 

following equation 

h=q(T — Ts l 

where g is the time rate of heat transfer per unit surface area, 7's is 

the body surface temperature, and 7, is the recovery or adiabatic 

wall temperature Because of the absence of any pressure gra 

dient, the recovery temperature is constant along the body and is 

usually measured early in the experiment. The heat-transfet 

coefficients are determined in accordance with Eq (1) after tests 

on heat-transfer rates have been made, and these coefficients 

generally agree with the correlations obtained for incompressible 

flow 

For the case of a body with a pronounced pressure gradient such 

as a cylinder or sphere, the recovery temperature is not a con 

stant but varies along the body surface. Because of this fact 

Eckert and Livingood! point out that the recovery temperaturt 

is no longer a significant parameter for the determination of 

supersonic heat-transfer coefficients if one desires agreement with 

incompressible values. The recovery temperature in Eq. (1) must 

which is be replaced by an effective recovery temperature 7-, 

determined at any particular point by maintaining the entire 

body at a uniform temperature and changing the constant tem 

perature level until the local heat-transfer rate is zero at the point 

under consideration. It is evident that an accurate experimental 

determination of 7+ ,, along the entire body presents more diffi 

culty than the measurement of recovery temperatures 

For some recent heat-transfer measurements on a hemisphere 

in supersonic flow (unpublished), the author has been able to 

obtain both heat-transfer data that are in fair agreement with 

incompressible theory and an estimate of 7+; from ony one typs 

of measurement, by using an extension of the data reduction 

method described in reference 2. The local heat-transfer rates 

were measured all along the hemisphere, which was maintained 

at a constant surface temperature at various temperature levels 

for heat transfer to and from the body. The local heat-transfer 

rates at each point on the body were then plotted against surface 

temperature as indicated in Fig. 1. The point of intersection of 

the data curve and the line of zero g/T) gives a direct estimate 

of the effective temperature. Furthermore, for any temperature 

such as 75/7, = 0.85 in Fig. 1, the heat-transfer coefficient can 

be determined by merely calculating the ratio of length y to length 

v. The case illustrated involved about an 80°C. difference be- 

tween the maximum and minimum levels of surface temperature 
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for a total temperature 7) of about 15°C. and a tunnel sup, 

pressure of 1 atmosphere, and a straight line fit the actual day 

points quite well. This result indicates that the he 

coefficient is practically constant over the investigat: 

temperatures and can be determined from the slope of the ]j 

The method looks promising, and is being applied to data 

tained in the Mach Number range of 2 to 5 
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Second-Order Pressure Law for Two- 
Dimensional Compressible Flow 

Wallace D. Hayes* 

Princeton University, Princ 
N A vember 10 1954 

N 

SYMBOLS 

free-stream velocity 

J free-stream Mach Number 

I second-order flow parame 

PAG VJ 

l times perturbation velocity potential, linear 

same as ¢, but complete second-order solution 

same as ¢, but a particular inhomogeneous solutt 

body shape function 

Cartesian coordinates 

reduced coordinates 

stream function in reduced coordinates 

t reduced velocity potentia 

K similitude’’ parameter 

INTRODUCTION 

fb 1E FIRST-ORDER terms in the pressure on a two-dimensiot 

body in a uniform subsonic or supersonic flow at a giv 

Mach Number may be related to those for a geometrically similar 

body at a reference value of the Mach Number by means of th 

well-known Prandtl-Glauert similarity laws. The referer 

value of the Mach Number is generally chosen to be 0 for sul 

sonic flow and Y2 for supersonic flow. The mean-surfa 
ne issumption is automatically satisfied for two-dimensional li 

ized flow; hence the result is more specific than the usual 

tional behavior deduced from similitude considerations, 

subsonic flow specifies a direct proportionality of the first-order 

terms in the pressure with 7/Y1 — 7%. Here the thickness 

ratio 7 is to be replaced by the camber ratio or angle of attack 

where appropriate, and Vv 1:— JJ? isto be replaced by Vv A dl 

in supersonic flow The purpose of the present note is to deriv 

a similar law for the second-order terms in the pressure evalu 

ated on the body, showing that these terms are proportional t 

r(1 — M2) 2 J PAst + 2(1 — M?){, where I is a dimensionless 

thermodynamic parameter evaluated in the undisturbed flow 

ts, Fs For a perfect gas with constant ratio of specific he 

(y+1)/2 
The writer obtained this result shortly after the VIII Interna 

tional Congress of Theoretical and Applied Mechanics at Istanbu 

in August, 1952, where he heard a brief presentation of a contr 

bution of Professor Isao Imai At the time he believed he | 
oa ais ; 

merely reproduced Imai’s results, and only an informal 

* Associate Professor of Aeronautical Engineering At the time this 0 

was originally prepared the writer was Scientific Liaison Officer wit! 

Office of Naval Research, U.S. Embassy, London, England 
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READERS’ 

s prepared However, as Dr. Milton Van Dyke has pointed 

wt to the writer, his result differs basically from any of Imai’s, 

| separate publication is indicated 

This result may be seen to be related to the classic expression 

of Busemann for the second-order expression for the pressure on a 

body in two-dimensional supersonic flow with a single wave 

system. An integrated form of this result was obtained earlier 

y Kaplan,® who gave the same expression for the lift of an air 

foil of arbitrary symmetrical shape 

PRELIMINARY DISCUSSION 

For purposes of orientation it is helpful to list the second-order 

fects which appear in the problem of determining the pressure 

n a two-dimensional body from a knowledge of the geometry of 

the body lhese are the following: 

A—The Axial Velocity-Slope Effect The lateral velocity 

omponent, which must be determined as a boundary condition 

from the slope of the body, is equal to this slope times the actual 

xial velocity. The effect of the perturbation axial velocity on 

this boundary condition formulation is a second-order effect 

B—The Boundary Displacement Effect. In a linear theory 

If the ad 

vantages of the mean surface approximations are not to be dis 

boundary conditions may be satisfied on the plane 

carded, in a more complete theory account must be taken of the 

fact that these boundary conditions are actually to be satisfied 

on the body itself instead of on the plane, and the effect of this 

displacement is a second-order effect 

C—The Second-Order Terms Effect. Once correct boundary 

conditions have been established they must be applied to a dif- 

ferential equation for solution. Second-order terms in the dif 

ferential equation itself give a second-order effect in the solution 

D—The Second-Order Pressure Effect. The solution to the 

differential equation yields the axial velocity. Presuming that 

itis the perturbation pressure which is of interest, its expression in 

terms of the velocity components has a term which is of the second 

der 

E—The Pressure Displacement Effect. In a linear theory the 

pressure would be evaluated on the plane, while it is of physical 

The effect of this 

lisplacement in the point at which the pressure is evaluated is a 

interest on the surface of the body itself 

second-order effect 

rhere does, of course, exist interaction between these basic 

second-order effects, but such interaction is of the third order and 

is properly excluded in a second-order theory. Thus these 

second-order effects may be considered completely superimpos 

ible in a second-order development. Since disturbance effects 

two-dimensional flow are principally important locally, it 

might be thought that the two displacement effects, B and E, 

should cancel and together give only a third-order effect; this 

does not turn out to be the case, except in the special case of 

supersonic flow with a single wave family. However, the two 

lisplacement effects and the second-order pressure effect (B, D, 

E), together with a part of the second-order terms effect which 

may be designated as Cg, do cancel and give together a third 

der effect for the pressure. The second-order term effect with 
Cz removed may be termed C’. 

Since the rotation engendered by shock waves is of the third 

order and properly neglected in a second-order theory, the 

xistence of a velocity potential is assumed. 

Basic ANALYSIS 

lhe symbols x and y represent the axial and lateral coordinates, 

respectively, and l’@ represents the perturbation velocity po 

tential. The subscript 1 refers to the complete second-order 
; 2 bias . 

Solution rhe quantity I is introduced, defined by 

lr = a~"Opa/dp (1 

to replace (y + 1)/2 usually used for a perfect gas; this permits 

€xtension of the results to an arbitrary single-phase fluid 
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The equation for the velocity potential may be written 

o (1 — A?) = 

lr l\4(o [2 \o, 1 — \?)¢,?], 2 

to include second-order terms rhe boundary conditions to be 

satisfied are 

¢ ) oa 

at infinity, and 

oO = 7rf'(x (1 ) ib 

y= TIX oc 

A subsidiary first-order equation is that the body surface may 

be expressed as the value of a suitably defined stream function 

evaluated on the plane 

From this point on a separate analysis is indicated for the cases of 

subsonic and supersonic flow 

SuBSONIC FLow ANALYSIS 

The change of variables is made 

n=yV1—-— M Sb 

whereby the potential equation takes the form 

dite + Ginn = K( Ge") e M*(be? + gn?): 0 

where 

x = PA4(1 — M2)" 7 

The boundary condition on the body takes the form 

diy = r(1 — JV f(t) (1 + @: (S 

and the subsidiary first-order expression for the body coordinate 

. 

7 = (1 — If / Or dé 

J 

evaluated on the plane n = 0. The quantity y is a stream func 

tion conjugate to the harmonic function @ 

Before expressing the solution it is convenient to define @ as the 

solution to the linear problem with the mean surface approxima 

tion and @» as the solution of the equation with boundary condi 

tions 

dort + Gp, = (dt? + G7): lOa 

go: = 0 at infinity 10b 

day = didn on 7 =) Lik 

The solution ¢¢; to equation (10a) found by Van Dyke does not 

satisfy boundary condition (10c 

The solution for the derivatives of ¢, the complete second-order 

potential, may now be expressed 

A B Sg 

dig = o, + dye — (1 — VW? Woy, — (x/2 (dn) + 

(1 + 4 2) (@ — DEpy lla 

D I 

pir = Y} —(1/2)(1 - Vl? (p¢? T @D — l— VW Y dtn 

= (¢ 2)n (didn) T (1 T K 2 G2 (llb 

The fact that in: = dig, may be readily checked, and the Lapla 

cian of o is 

Cp 

dite + dinn = —(1 — M? (pe? + oy? )e 4+ 

Song C 

(1 + «/2) (bg? + ye + (x/2) (@ — dy" )e (12 

which checks the basic Eq. (6 On the body the pressure may 

be expressed 
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E D 

—(1 2)Cp = dit Tt (l — M? Wore + (1/2)(1 — IV (pe? t Gn" 

= de (1 + «/2) Pz (13) 

evaluated on the plane » = 0. In the equations (11) to (13 

above certain of the terms are labeled to indicate with which 

second-order effect they are connected. In order to reduce the 

boundary condition on the body to a form independent of the 

Mach Number and the thickness ratio the transformation is made 

g: = r(1 — JM?) 9; go = 7(1 — JM?) ', (14 

With the definition for the “similitude’’ parameter 

K = 7(1 — MW?) yr + 21 — 1MW*)} (15) 

the linear boundary condition takes the form 

?, = f(&) on n= 0 (16) 

ind the second-order pressure coefficient the form 

= C,=% +-— K 4, (17) 

In the linear theory of a subsonic two-dimensional airfoil the 

lift or antisymmetric part of the solution and the thickness or 

symmetric part of the solution are distinct and do not interact 

The second-order effects due to either of these parts are sym- 

metric and give no lift. The interaction second-order effects 

between these two parts are antisymmetric and do contribute to 

the lift on the foil. In this connection the solution for this inter 

action effect must be chosen to satisfy the Kutta condition on 

the trailing edge of the foil. As might have been expected, the 

nature of the usual leading-edge singularity does not improve by 

the addition of the second-order terms; the lift integral still con- 

verges, however, and this singularity is not particularly any more 

of a difficulty in second-order theory than in the linear theory 

The conditions on the plane in front of or in back of the airfoil 

follow the theory without difficulty. 

Confidence in the soundness of the application of these second- 

order results to airfoils for which the solutions contain certain 

singularities is lent by the result of Kaplan,* who showed that 

the result holds for the total lift of an arbitrary symmetrical air 

foil, and by the successes of Lighthill’s method? of rendering solu- 

tions uniformly valid. Kaplan's procedure did not involve the 

singularities of linear theory. Van Dyke® has pointed out the 

agreement between the results of this paper and those previously 

obtained in special cases, and has promised to show how subsonic 

solutions can be rendered uniformly valid near stagnation points. 

If the second-order effects (B, Cg, D, E) are removed from the 

theory, the same results are obtained. In other words, if the 

only second-order effects included are the axial velocity-slope 

effect and part of the second-order terms effect (4A, C’), using the 

mean-surface approximation and the linear pressure formula, and 

altering the potential Eq. (2) to the fictitious form 

Plyy + (1 an M?*)i,, = 

PM (.7)r + [d,? + (1 — M*)o,?|, (18 

the correct second-order pressure result is obtained. 

SUPERSONIC FLow CASE 

A similar analysis may be made in the supersonic case in which 

1 — MM? is negative, by substituting VY 1/7? — 1 for Y1 — JP 

where appropriate. The results are in accord with those for the 

subsonic case. 

A general two-dimensional supersonic flow is composed of two 

wave families, which physically must be considered to arise from 

bodies on either side of the flow which is of interest. The pressure 

on one body due to the presence of the other is usually more 

strongly influenced by first-order wave effects which are not 

taken into account in this theory than by the second-order effects 

discussed here. Only in special cases is this untrue, such as in a 

relatively narrow channel without strong singularities in the slope 

distribution. Thus the value of this second-order theory must 

be considered to be very much restricted in practice in the gener 

supersonic case 

With a single wave family, the solution is immediate and ident; 

cal with the second-order result of Busemann 

RELATION TO TRANSONIC SIMILITUDE 

With a given body shape the pressure expression including a] 

second-order effects is similar under a transformation which pre 

serves the ‘‘similitude’’ parameter A This result does not vie 

a similitude in the usual sense, as it is restricted to the sing 

quantity pressure, as evaluated only on the body surface. Th 

result is more valuable than a similitude in that it specifies 

definite proportionality, rather than just a functional behavio; 

However, the quantity A may be used in place of the classic for 

of the von Karman transonic similitude parameter to correlat 

pressure results in transonic flow Van Dyke has informed th 

author that A appears to compete quite well for this purpos 

with the form of the transonic similitude parameter treated by 

Spreiter.6 It would appear to be difficult to establish a theo 

retical justification for this use of A, however, as the theory her 

presented is really an extension of the linear theory and does not 

include any mechanism to allow for such typically transonic phe 

nomena as shock waves on the body or a bow wave in front of 

the body 

REFERENCES 

Imai, I., Extension of von Kadrmdn’s Transenic Similarity Rule, J. Ph 

Soc. Japan, Vol. 9, 103-108, 1954 

? Hayes, W. D., Second-order Two 

Similitude, British A.R.C., No. 15, 722 

Kaplan, C., Effect of Compressibility at High Subsonic Velocities on 

Lifting Force Acting on an Elliptic Cylinder, NACA TN 1118 or Rep. 834 

Dimensional Flow Theor ind Imai 

F.M. 1877 

1946 

4 Lighthill, M. J., A Technique for Rendering Approximate Solution 

Physical Problems Uniformly Valid, Phil. Mag., Vol. 40, 1179-1201, 1949 

See also Aero. Quart., Vol. 3, 193-210, 1951, and General Theory Hi 

Speed Aerodynamics, Section E, Princeton, 1954 

> Van Dyke, M. D., The Second-Order Compressibility Rule for Airf 

Journal of the Aeronautical Sciences, Vol. 21, 647-648, 1954 

6 Spreiter, J. R., Theoretical Prediction of Pressure Distributions on N 

lifting Airfoils at High Subsonic Speeds, NACA TN 3096, 1954. See als 

Journal of the Aeronautical Sciences, Vol. 21, 70-72, 1954 

+ 

Brachistocronic Maneuvers of a Constant Mass 

Aircraft in a Vertical Plane 

Placido Cicala and Angelo Miele 
Professor, Politecnico di Torino, Italy, and Research Assistant 

Professor of Aeronautical Engineering, Polytechnic Institute o! 
Brooklyn, Aerodynamics Laboratory, Freeport, L. |., New York 
Respectively 

December 18, 1954 

SYMBOLS 

D drag, lbs 

DL oD /oL 

at constant altitude and constant velocity 

partial derivative of drag with respect to lift, calculated 

acceleration of gravity, ft.sec 

h altitude, ft 

I lift, Ibs 

t time, secs 

1 thrust, Ibs 

V velocity, ft.sec 

i weight, Ibs 

0 = path inclination, positive for climbing flight 

Subscripts 

1 initial conditions 

} final conditions 

Superscripts 

derivative with respect to altitude (e.g V’ = dV/dh) 
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and for minimum fuel consumption has received considerable 

tions 

regart 

flow 

onsi¢ 

The 

lar as 

ath 

the d 

iltitu 

proble 

of the 

sub7ec 

vhich 

expre: 

be rec 

Bec 

the p 

nique: 

itions 

using 

bound 

proble 

conce] 

In 

proble 

proacl 

writt¢ 

follow 

to the 

rect f 

ompl 

The 

indire: 

of the 

of the 

necess 

lifting 

equatt 

quent! 



READERS’ FORUM 287 

1 generg ttention in recent years. Because of the mathematical diffi- The main advantage of the present approach lies in the fact 

ulties associated with this category of problems, various simpli that it leads to continuous solutions while the results of all the 

nd identi feations were introduced into the equations of the motion. For previous theories indicated discontinuities in d\/dh at the 

the papers of references 1 to 9 the following assumptions were points where the curve of equation w = 0 intersects the patterns 

explicitly or implicitly used: (1) the small angle between the of equation @ = +7/2. Only the brachistocronic problem is her« 

sectors thrust and velocity is neglected; (2) the weight of the air treated, the minimum fuel consumption problem being mathe 

raft is assumed constant; (3) the curvatures and the squares matically analogous 

saben of the path inclination are considered negligible with regard to " ‘ . = ' 

not viel their effects on that part of the drag which depends on the lift; ECESSARY CONDITIONS FOR THE EXISTENCE OF THE EXTREMUM 

he singl #) the nies wan Oot nee fuel eee = assumed func- The fundamental equations of the motion of the aircraft on the 

ce. Th tions of velocity and altitude only; (5) the aerodynamic lag is dis- normal and on the tangent to the flight path are the following’ 
aa regarded —i.e., the aerodynamic forces are calculated as in steady ae : 

ecihes . . : . : . G will + (VV’/g) 1/(V sin @)|] = 0 6 
. fow; and (6) only flight paths contained in a vertical plane are 

vehavior vite L/W = a + Blcos 6 1) + y( V2/¢)0' sin 6 7 
SSIC forn 

correlat The hypotheses (2) and (3) have a particular importance inso- where 

med th far as the equation of the motion on the normal to the flight v= Wid D . 

purpose path is consequently approximated with L = HW” = const. and 

eated by the drag is analytically reduced to a function of velocity and The thrust 7°is assumed a function of the type 7 = 7(h, V Be 

a theo ltitude only. It follows that the aforementioned variational cause of the polar and the expressions of the aerodynamic forces, 

ory here problems consist in general in finding the extremals of integrals the drag may be conceived as a function D = D(h, V, L) of alti 

does not of the form! tude, velocity, and lift. The effects of the Mach and Reynolds 

Numbers on D are taken into consideration 
mic phe 1 : ; 

{ A(V, 6, h) dh (1) The time necessary to fly an aircraft from one altitude /, to 
n front of J S j 

another hz is given by 
subject to a nonholonomic subsidiary condition of the type jo a oars 

dh VI 
B(V, V’,@, hk) = 0 (2) {= oe = Vv 1 + dh 2] 

vJh V sin 6 Jh s 

J. Ph which results from the equations of the motion, the polar, and the asi f : ; , : 
; - : an : he value of the integral (9) is determined if two functions V(h 

i] expressions of the aerodynamic forces The same integrals may ee i ‘ 
sialicias : . , and @(h) are prescribed rhese two functions, however, are not 

be reduced to the equivalent scheme ‘ ; ‘ 
mutually independent, insofar as they must satisfy an equation 

Rep. 834 { [C(V, h) + V’'E(V, h)] dh (3) of the type 
J ih - P 

ne ; pee : < ; G(h, V, V’, 0, @ == () (10 
sages; Because of the difficulties arising from the analytical nature of 
O1, 194 tage Rage ; ; = ; ee tae .Z : iq (6 . az the problem, earlier investigations were carried out with tech- which results by introducing in the first member of Eq. (6) the 

niques other than the general methods of the Calculus of Vari expressions for 7 = 7(V,h), D = D(V,h, L), and L = L(V, 8, 

irfoi itions. In references 1 and 8 the minimal problem was solved 9’), the last one being supplied by Eq. (4 As occurs in many 

using Green's theorem and the special properties of the function mechanical problems, Eq. (10) is a nonintegrable differential ex- 
m N : ; 7 ¢ pression or nonholonomic condition. The use of Lagrange multi 
See als wi V,h) = (0C/O0V) — (OE/Oh) (4) ‘ : a 

pliers is therefore indispensable 

It was shown that in general the optimum path is composed of The brachistocronic problem is now formulatedTt as follows 

three ares: an initial are of equation @ = +7/2; a central arc ‘to determine the two unknown functions V’(/) and @(h4) which 

of equation w = 0; and a final are of equation @ = +7/2, the make the integral (9) stationary and satisfy the subsidiary 

dive or zoom character of the two end arcs depending on the condition (10) at any point of the flight path.” 

Mass boundary conditions of the problems. In reference 2 the same If the first form of the integral (9) is used, the optimum path is 

problem was solved with a graphic-analytic method based on the to be found as the extremal of the integral 

concept of energy height (A, = h + V?/2g) he 

In more recent times an indirect variational attack to the :s (xc Ti race ,) dh = 
, ° -_ => on vn 

\ssistant problem was attempted in references 5, 6, and 7 These ap- _ 
itute of ee a la : 2 a ee l d VV’ v York proaches, however, were limited to the form (3) of the integral — + hw (: ri dh 11 

Written as ws V sin @ g 

eh, . . 

| F(V. h.) dh (5) where A = X(A) is a variable Lagrange multiplier 

” By varying V and @, the following two Euler equations are 

following a transformation of coordinates from the (V, /) plane derived 

tothe (V, h.) plane. The solution consequently obtained is cor- : , ae 
V(AW)’ + e[(1 — AV/(V? sin @) Iculated 

rect for the free boundary value problem (Vj, V2 free) but in ” nae . 
. : es : (eg + VV’) (OW/OV) =0 (12 

complete for the fixed end-points problem (Vj, V2 given) insofar 

iS in general the boundary conditions are not satisfied. As a (yAWV2D,)’ + }e{(1 — A)/V| (cos 6/sin? a); +4 
matter of fact, because of the formal independence of the integrand AWDi(Be — yV%' cot 6) = 0 (13 
function of dV/dh,, the order of the Euler equation associated 

" ; _ . cael rien ; 
with the integral (5) reduces to zero An inspection of Eqs. (10), (12), and (13) shows that this 

differential system is of order four. As a consequence four 

boundary conditions may be imposed. For instance, the values 
=NT RESEARCH : : £ : 

of the velocity (1, V2) and of the path inclination (6, 62) may 
SCOPE OF THE PRE 

The object of the present note is twofold: (1) to prove that be prescribed at the altitudes /, and /»e if the variational problem 

indirect variational methods may supply the complete solution is of fixed end-points type 

of the problem and in particular justify the dive or zoom character 

of the end ares of the optimum path and (2) to formulate the * The coefficients a, 8, and are introduced in order to simplify the 

necessary conditions for the extremum in a more general way by derivation of the solution under particular approximations rhe general 
1s ae ; : i os -ase is represented by 3 
lilting the restriction (3) used in all the previous papers. The cope eepreEn ee ee 5 

T It is immaterial to use the first or the second form of the integral (9 
: equation of ion > > fli isc > ; 1 time ] of the motion on the normal to the flight path is conse in the solution of the minimal problem. The Lagrange multipliers corre 

erable quently written in its exact form sponding to each of these two possibilities differ by a numerical constant only 
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INTEGRATION OF EULER’S EQUATIONS 

The integration of the differential system constituted by Eqs 

(10), (12), and (13) is to be performed by approximate methods 

in the most general case 

Under particular circumstances, however, the problem may be 

simplified. 

Required Lift Independent of Path Inclination and Curvature 

For this case (a = 1,8 —~0, y ~ 0, L ~ W), Eq. (13) reduces 

to 

(1 — A) cos 0/sin? 6 = O (14) 

which means that the optimum path is composed of arcs of equa- 

tion cos @ = 0 (@ = +7/2) and arcs of equation A = 1 

It is to be noted that for X = 1 Eq. (12) yields 

(ow /oV) [(V/g) (OW/dh)] = O (15) 

In this way the results of references 1, 2, and 3 are found again 

It by means of the indirect methods of the Calculus of Variation 

is to be noted that the assumption L = JW has changed the an- 

alytical nature of the problem insofar as only two boundary con- 

ditions may now be imposed to the flight path—i.e., the values 

of the velocity (Vi, V2) at the altitudes f; and hf. in the case of a 

fixed end-points problem. 

Negligible Induced Drag 

For a > 0, B > 0, y ~ 0, L — O, Eqs. (14) and (15) are still 

formally true, with the additional simplification that the D func 

CAL SCIENCES APRIL, 

tion to be introduced in the expression for is the zero-lift drag 

of the aircraft. This case may be of some interest for turbojet 

powered aircraft at low tropospheric altitudes 
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